Integration

remark (A common proof technique):

    
  • Show something holds for indicator functions.
  • Show it holds for simple functions by linearity.
  • Use skf and apply MCT to show it holds for f.
remark (on notation):

    
  • L+: nonnegative measurable functions
  • L1: Lebesgue integrable functions, so .
definition (Measurable Function):

A function f: (X, {\mathcal{M}}_X) \to (Y, {\mathcal{M}}_Y) is ({\mathcal{M}}_X, {\mathcal{M}}_Y){\hbox{-}}measurable iff f^{-1}({\mathcal{M}}_Y) \subseteq {\mathcal{M}}_X. Equivalently, if {\mathcal{E}}_Y is a generating set for {\mathcal{B}}_Y, f^{-1}({\mathcal{E}}_Y) \subseteq {\mathcal{B}}_X.

  • An functional on a general measurable space f: f:(X, {\mathcal{M}}_X) \to ({\mathbf{R}}, {\mathcal{B}}_{\mathbf{R}}) is measurable \iff f is ({\mathcal{M}}_X, {\mathcal{B}}_{\mathbf{R}}){\hbox{-}}measurable.
  • A functional f: {\mathbf{R}}^d\to {\mathbf{R}} is Borel measurable iff f is ({\mathcal{B}}_{{\mathbf{R}}^d}, {\mathcal{B}}_{\mathbf{R}}){\hbox{-}}measurable.
  • A functional f: {\mathbf{R}}^d\to {\mathbf{R}} is Lebesgue measurable iff f is ({\mathcal{L}}_{{\mathbf{R}}^d}, {\mathcal{B}}_{\mathbf{R}}){\hbox{-}}measurable.

Using that {\mathcal{B}}_{{\mathbf{R}}} is generated by open/closed rays, it suffices to check any of the following (for all \alpha \in {\mathbf{R}}):

  • f^{-1}(\alpha, \infty)\in {\mathcal{M}}
  • f^{-1}[\alpha, \infty)\in {\mathcal{M}}
  • f^{-1}(-\infty, \alpha)\in {\mathcal{M}}
  • f^{-1}(-\infty, \alpha]\in {\mathcal{M}}
remark:

Note that we still require Borel sets in the target for Lebesgue measurability! Taking ({\mathcal{L}}_{{\mathbf{R}}^d}, {\mathcal{L}}_{\mathbf{R}}) functions is too stringent, e.g. this class does not contain continuous functionals.

warnings:

If f is {\mathcal{L}}{\hbox{-}}measurable and h is continuous, it’s not necessarily true that k\coloneqq f\circ h is {\mathcal{L}}{\hbox{-}}measurable. Standard counterexample: set g(x) \coloneqq C(x) + x for C the Cantor-Lebesgue function, then g:[0, 1]\to [0, 2] is a homeomorphism. Then m(g(C)) = 1 since f is constant on intervals in C^c, so use Vitali’s theorem: a set is null iff every subset is measurable. So g(C) contains a non-measurable set A. Define B\coloneqq g^{-1}(A), then B \subset C and m(C) = 0 implies B is measurable and \chi_B is a measurable function. But then k\coloneqq\chi_B \circ g^{-1} is not {\mathcal{L}}{\hbox{-}}measurable, since k^{-1}(1) = A is a non-measurable set, but \chi_B is {\mathcal{L}}{\hbox{-}}measurable and g^{-1} is continuous.

proposition (Closure of measurable functions under operations):

{\mathcal{M}}{\hbox{-}}measurable functionals are closed under

  • Sums
  • Products
  • Sups/infs
  • Limsups/Liminfs
  • Limits when they exist, and the limiting function is measurable.
  • \max(f, g) and \min(f, g).

Characteristic functions on measurable sets are automatically measurable, since E\in {\mathcal{M}}\implies E = \chi_E^{-1}(\left\{{1}\right\}).

definition (Simple Function):

A simple function s: {\mathbf{C}}\to X is a finite linear combination of indicator functions of measurable sets, i.e.  \begin{align*} s(x) = \sum_{j=1}^n c_j \chi_{E_j}(x) .\end{align*}

proposition (Folland 2.10b):

If f:X\to {\mathbf{C}} is measurable, there is a sequence of simple functions \phi_n\nearrow f which always converges pointwise, and converges uniformly on any bounded set.

definition (Lebesgue Integral):

\begin{align*} \int_X f \coloneqq\sup \left\{{ \int s(x) \,d\mu{~\mathrel{\Big\vert}~}0\leq s \leq f, s\text{ simple } }\right\} .\end{align*}

Note that if s = \sum c_j \chi_{E_j} is simple, then \begin{align*} \int_X s(x) \,d\mu\coloneqq\sum_{j=1}^n c_j \mu(E_j) .\end{align*}

remark (Integrals split across disjoint sets):

A useful fact: for (X, \mathcal{M}) a measure space, integrals split across disjoint sets: \begin{align*} \int_X f = \int_{X\setminus A} f + \int_A f && \forall\, A \in \mathcal{M} .\end{align*}

definition (Essential supremum and infimum, essentially bounded):

An essential lower bound b on a function f is any real number such that S_{b} \coloneqq\left\{{x{~\mathrel{\Big\vert}~}f(x) < b }\right\} = f^{-1}(-\infty, b) has measure zero. The essential infimum is the supremum of all essential lower bounds, i.e. {\mathrm{ess}}\inf f \coloneqq\sup_{b} \left\{{b{~\mathrel{\Big\vert}~}\mu S_b = 0}\right\}. This is the greatest lower bound almost everywhere.

Similarly an essential upper bound c is any number such that S^c \coloneqq f^{-1}(c, \infty) has measure zero, and the essential supremum is {\mathrm{ess}}\sup f \coloneqq\inf_{c} \left\{{c{~\mathrel{\Big\vert}~}\mu S^c = 0}\right\}, which is the least upper bound almost everywhere.

A function is essentially bounded if {\left\lVert {f} \right\rVert}_\infty \coloneqq{\mathrm{ess}}\sup f < \infty. These are functions which are bounded almost everywhere.

example (An essentially bounded but not bounded function):

f(x) = x\chi_{\mathbf{Q}}(x) is essentially bounded but not bounded.

proposition (L-infty functions are equivalent to bounded almost-everywhere functions):

If f\in L^\infty(X), then f is equal to some bounded function g almost everywhere.

theorem (p-Test for Integrals):

\begin{align*} \int_0^1 {1\over x^p} < \infty \iff p < 1 \\ \int_1^\infty {1\over x^p} < \infty \iff p > 1 .\end{align*}

slogan:

Large powers of x help us in neighborhoods of infinity and hurt around zero.

The Convergence Theorems

theorem (Monotone Convergence):

If f_n: X\to [0, \infty) \in L^+ and f_n \nearrow f almost everywhere, then \begin{align*} \lim \int f_n = \int \lim f_n = \int f \quad \text{i.e.}~~ \int f_n \to \int f .\end{align*}

slogan:

Measurable, non-negative, increasing pointwise a.e. allows commuting limits and integrals.

#todo Proof

theorem (Dominated Convergence):

If f_n \in L^1 and f_n \to f almost everywhere with {\left\lvert {f_n} \right\rvert} \leq g for some g\in L^1, then f\in L^1 and \begin{align*} \int {\left\lvert {f_n - f} \right\rvert} \to 0 .\end{align*}

As a consequence, \begin{align*} \lim \int f_n = \int \lim f_n = \int f \quad \text{i.e.}~~ \int f_n \to \int f < \infty \end{align*}

Positivity not needed.

#todo Proof

theorem (Generalized DCT):

If

  • f_n \in L^1 with f_n \to f almost everywhere,
  • There exist g_n\geq 0 \in L^1 nonnegative with {\left\lvert {f_n} \right\rvert} \leq g_n,
  • g_n\to g almost everywhere with g\in L^1, and
  • \lim \int g_n = \int g,

then f\in L^1 and \lim \int f_n = \int f < \infty.

Note that this is the DCT with {\left\lvert {f_n} \right\rvert} < {\left\lvert {g} \right\rvert} relaxed to {\left\lvert {f_n} \right\rvert} < g_n \to g\in L^1.

proof (of generalized DCT):

Proceed by showing \limsup \int f_n \leq \int f \leq \liminf \int f_n:

  • \int f \geq \limsup \int f_n: \begin{align*} \int g - \int f &= \int \qty{g-f} \\ &\leq \liminf \int \qty{g_n - f_n} \quad \text{Fatou} \\ &= \lim \int g_n + \liminf \int (-f_n) \\ &= \lim \int g_n - \limsup \int f_n \\ &= \int g - \limsup \int f_n \\ \\ \implies \int f &\geq \limsup \int f_n .\end{align*}

    • Here we use g_n - f_n \overset{n\to\infty}\longrightarrow g-f with 0 \leq {\left\lvert {f_n} \right\rvert} - f_n \leq g_n - f_n, so g_n - f_n are nonnegative (and measurable) and Fatou’s lemma applies.
  • \int f \leq \liminf \int f_n: \begin{align*} \int g + \int f &= \int(g+f) \\ &\leq \liminf \int \qty{g_n + f_n} \\ &= \lim \int g_n + \liminf \int f_n \\ &= \int g + \liminf f_n \\ \\ \int f &\leq \liminf \int f_n .\end{align*}

    • Here we use that g_n + f_n \to g+f with 0 \leq {\left\lvert {f_n} \right\rvert} + f_n \leq g_n + f_n so Fatou’s lemma again applies.
remark:

The converse to the DCT does not hold, i.e. L^p boundedness does not imply a.e. boundedness, i.e. it is not true that \lim \int f_k = \int f implies that \exists g\in L^p such that f_k < g a.e. for every k.

Take

  • b_k = \sum_{j=1}^k \frac 1 j \to \infty

  • f_k = \chi_{[b_k, b_{k+1}]}

Then

  • f_k \overset{a.e.}\to f = 0,

  • \int f_k = \frac 1 k \to 0 \implies {\left\lVert {f_k} \right\rVert}_p \to 0,

  • 0 = \int f = \lim \int f_k = 0

  • But g > f_k \implies g > {\left\lVert {f_k} \right\rVert}_\infty = 1 a.e. \implies g\not\in L^p({\mathbf{R}}).

proposition (Convergence in L^1 implies convergence of norms):

If f\in L^1, then \begin{align*} {\left\lVert {f_n - f} \right\rVert}_{L^1} \overset{n\to\infty}\longrightarrow 0 \iff {\left\lVert {f_n} \right\rVert}_{L^1} \overset{n\to\infty}\longrightarrow {\left\lVert {f} \right\rVert}_{L^1} .\end{align*}

proof (That L^1 convergence implies convergence of norms):

Let g_n = {\left\lvert {f_n} \right\rvert} - {\left\lvert {f_n - f} \right\rvert}, then g_n \to {\left\lvert {f} \right\rvert} and \begin{align*} {\left\lvert {g_n} \right\rvert} = {\left\lvert { {\left\lvert {f_n} \right\rvert} - {\left\lvert {f_n - f} \right\rvert} } \right\rvert} \geq {\left\lvert {f_n - (f_n - f)} \right\rvert} = {\left\lvert {f} \right\rvert} \in L^1 ,\end{align*} so the DCT applies to g_n and \begin{align*} {\left\lVert {f_n - f} \right\rVert}_1 = \int {\left\lvert {f_n - f} \right\rvert} + {\left\lvert {f_n} \right\rvert} - {\left\lvert {f_n} \right\rvert} = \int {\left\lvert {f_n} \right\rvert} - g_n\\ \to_{DCT} \lim \int {\left\lvert {f_n} \right\rvert} - \int {\left\lvert {f} \right\rvert} .\end{align*}

theorem (Fatou):

If f_n is a sequence of nonnegative measurable functions, then \begin{align*} \liminf_n \int f_n &\geq \int \liminf_n f_n \\ \limsup_n \int f_n &\leq \int \limsup_n f_n .\end{align*}

#todo Prove

example (Using Fatou to compute the limit of a sequence of integrals):

\begin{align*} \lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{n^{2}}{1+n^{2} x^{2}} e^{-\frac{x^{2}}{n^{3}}} d x \overset{\text{Fatou}}\geq \int_{0}^{\infty} \lim _{n \rightarrow \infty} \frac{n^{2}}{1+n^{2} x^{2}} e^{-\frac{x^{2}}{n^{3}}} d x \to \int \infty .\end{align*}

Note that MCT might work, but showing that this is non-decreasing in n is difficult.

Commuting

proposition (Commuting Sums with Integrals):

\begin{align*} f_n \geq 0 \text{ and } \sum_n \int {\left\lvert {f_n} \right\rvert} = \sum_n {\left\lVert {f_n} \right\rVert}_{L^1} < \infty \implies \sum_n \int f_n = \int \sum_n f_n .\end{align*} If the f_n are not necessarily non-negative, we still have \begin{align*} \left\{{f_n}\right\} \subseteq L^1 \text { and }\qty{\sum\int{\left\lvert {f_n} \right\rvert} < \infty \text { or } \int \sum {\left\lvert {f_n} \right\rvert} < \infty } \implies \int\sum_n f_n = \sum_n \int f_n .\end{align*}

proof (Commuting sums with integrals, non-negative case):
  • Idea: MCT.
  • Let F_N = \sum^N f_n be a finite partial sum;
  • Then there are simple functions \phi_n \nearrow f_n
  • So \sum^N \phi_n \nearrow F_N and MCT applies
proof (Commuting sums with integrals, integrable case):

    
  • By Tonelli, if f_n(x) \geq 0 for all n, taking the counting measure allows interchanging the order of “integration”.
  • By Fubini on {\left\lvert {f_n} \right\rvert}, if either “iterated integral” is finite then the result follows.
proposition (?):

\begin{align*} \left\{{f_n}\right\} \subseteq L^1 \text{ and } \sum_n {\left\lVert {f_n} \right\rVert}_{L^1} < \infty \implies \sum_n f_n \text{ converges }{ \text{a.e.} }\text{ and in } L^1 .\end{align*}

proof (?):

Define F_N = \sum^N f_k and F = \lim_N F_N, then {\left\lVert {F_N} \right\rVert}_1 \leq \sum^N {\left\lVert {f_k} \right\rVert} < \infty so F\in L^1 and {\left\lVert {F_N - F} \right\rVert}_1 \to 0 so the sum converges in L^1. Almost everywhere convergence: ?

proposition (Commuting derivatives with integrals, Folland 2.27):

If f:X\times I \to {\mathbf{C}} where f_t: X\to {\mathbf{C}} is integrable for each t, then if {\left\lvert {f(x, t)} \right\rvert} \leq {\left\lvert {g(x)} \right\rvert} for some g\in L^1, then \begin{align*} \lim_{t\to t_0}\int_X f(x, t) \,d\mu= \int_X f(x, t_0) \,d\mu\coloneqq F(t_0) ,\end{align*} and if f_x: I\to {\mathbf{C}} is continuous for all x, then F: I\to {\mathbf{C}} is continuous.

Moreover if {\frac{\partial f}{\partial t}\,} exists and {\left\lvert {{\frac{\partial f}{\partial t}\,}(x, t)} \right\rvert} \leq {\left\lvert {g} \right\rvert} for some g\in L^1, then \begin{align*} {\frac{\partial }{\partial t}\,} \int_X f(x, t) \,d\mu = \int_X {\frac{\partial }{\partial t}\,} f(x, t) \,d\mu .\end{align*}

#todo