Midterm Exam 2 (November 2018)

Fall 2018 Midterm 2.1 #real_analysis/qual/work

Let f,gL1([0,1]), define F(x)=x0f(y)dy and G(x)=x0g(y)dy, and show 10F(x)g(x)dx=F(1)G(1)10f(x)G(x)dx.

Fall 2018 Midterm 2.2 #real_analysis/qual/work

Let ϕL1(Rn) such that ϕ=1 and define ϕt(x)=tnϕ(t1x). Show that if f is bounded and uniformly continuous then fϕtt0f uniformly.

Fall 2018 Midterm 2.3 #real_analysis/qual/work

Let gL([0,1]).

  • Prove gLp([0,1])pgL([0,1]).

  • Prove that the map Λg:L1([0,1])Cf10fg defines an element of L1([0,1]) with ΛgL1([0,1])=gL([0,1]).

Fall 2018 Midterm 2.4 #real_analysis/qual/work

See

\cref{hilbert_space_exam_question}

#real_analysis/qual/work