Fall 2018 Midterm 2.1 #real_analysis/qual/work
Let f,g∈L1([0,1]), define F(x)=∫x0f(y)dy and G(x)=∫x0g(y)dy, and show ∫10F(x)g(x)dx=F(1)G(1)−∫10f(x)G(x)dx.
Fall 2018 Midterm 2.2 #real_analysis/qual/work
Let ϕ∈L1(Rn) such that ∫ϕ=1 and define ϕt(x)=t−nϕ(t−1x). Show that if f is bounded and uniformly continuous then f∗ϕtt→0→f uniformly.
Fall 2018 Midterm 2.3 #real_analysis/qual/work
Let g∈L∞([0,1]).
-
Prove ‖g‖Lp([0,1])p→∞→‖g‖L∞([0,1]).
-
Prove that the map Λg:L1([0,1])→Cf↦∫10fg defines an element of L1([0,1])∨ with ‖Λg‖L1([0,1])∨=‖g‖L∞([0,1]).
Fall 2018 Midterm 2.4 #real_analysis/qual/work
See
\cref{hilbert_space_exam_question}