Series: Exercises

Analytic Properties of Series

exercise (Power series converge uniformly on their radius of convergence):

Show that any power series converges uniformly within its radius of convergence.

#complex/exercise/completed

solution:

Write SN(z):=0kNck(zz0)k and S:=lim. Suppose R\coloneqq\qty{\limsup_k {\left\lvert {c_k} \right\rvert}^{1\over k} }^{-1} is the radius of convergence and let r\leq R, we’ll show S_N\to S uniformly on any disc {\left\lvert {z-z_0} \right\rvert}< r.

Use the M{\hbox{-}}test: \sum f_k converges if {\left\lVert {f_k} \right\rVert}_\infty\leq M_k where \left\{{M_k}\right\}\in \ell^1({\mathbb{N}}). Define f_k \coloneqq c_k (z-z_0)^k, then \begin{align*} {\left\lVert {f_k} \right\rVert}_\infty =\sup_{{\left\lvert {z-z_0} \right\rvert}\leq r} {\left\lvert {c_k(z-z_0)^k} \right\rvert} \leq {\left\lvert {c_k} \right\rvert} r^k \coloneqq M_k .\end{align*} Then \begin{align*} \sum_{k\geq 0} M_k = \sum_{k\geq 0} {\left\lvert {c_k} \right\rvert} r^k ,\end{align*} and the claim is that this converges.

Note that since r\leq R, we have convergence of \begin{align*} \sum_{k\geq 0} c_k r^k .\end{align*} Recall that root test: \begin{align*} \sum_k a_k \text{ converges absolutely if } \limsup_k {\left\lvert {a_k} \right\rvert}^{1\over k} < 1 .\end{align*} Here we take a_k \coloneqq c_k r^k, then \begin{align*} \limsup_k {\left\lvert {a_k} \right\rvert}^{1\over k} &\coloneqq\limsup_k {\left\lvert {c_k r^k} \right\rvert}^{1\over k} \\ &= \limsup_k {\left\lvert {c_k} \right\rvert}^{1\over k} r \\ &< \limsup_k {\left\lvert {c_k} \right\rvert}^{1\over k} R\\ &\coloneqq\limsup_k {\left\lvert {c_k} \right\rvert}^{1\over k} \qty{\limsup_{k} {\left\lvert {c_k} \right\rvert}^{1\over k} }^{-1}\\ &= 1 ,\end{align*} so \sum_k {\left\lvert {c_k r^k} \right\rvert} < \infty. Thus \left\{{M_k}\right\}\in \ell^1({\mathbb{N}}), and so \sum_k f_k converges uniformly and absolutely on {\left\lvert {z-z_0} \right\rvert} = r < R.

exercise (Power series are continuous):

Show that any power series is continuous on its domain of convergence.

#complex/exercise/completed

solution:

Let f(z) = \lim_{N\to\infty} \sum_{k\leq N} c_k (z-z_0)^k. Use that power series converge uniformly and absolutely within their disc of convergence, each term is a continuous function, and finite sums of continuous functions are again continuous. So the partial sums S_N are continuous, and since S_N\to f uniformly, f is continuous by the uniform limit theorem.

exercise (Uniform limits of derivatives, term-by-term differentiation):

Suppose f_k: \Omega\to {\mathbb{C}} is a sequence of differentiable functions converging locally uniformly to f:\Omega\to {\mathbb{C}}. Show that

  • f is continuous,
  • f is differentiable,
  • \left\{{f_k'}\right\}\to f' locally uniformly.

Thus if f(z) = \sum{k\geq 0} c_k (z-z_0)^k is a power series, since S_N\to f locally uniformly, f can be differentiated term-by-term within its radius of convergence.

#complex/exercise/completed

solution:

That f is continuous is a local question: fixing a point z_0, take a closed disc {\mathbb{D}}+z_0 about z_0. By local uniform convergence f_k\to f uniformly on {\mathbb{D}}+z_0, and differentiable \implies continuous. So each f_k is continuous, making f continuous on {\mathbb{D}}+z_0 by the uniform limit theorem.

That f is differentiable is again a local question: fix z and write \gamma \coloneqq\mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}+ z\mkern-1.5mu}\mkern 1.5mu as the boundary of the disc about z. Define g_k(\xi) \coloneqq{f_k\over \xi-z}, so g_k \to {f \over \xi-a} locally uniformly. Now apply Cauchy’s integral formula at z: \begin{align*} f(z) &= \lim_k f_k(z) \\ &= \lim_k {1\over 2\pi i}\int_\gamma {f_k(\xi) \over \xi - z}\,d\xi\\ &= \lim_k {1\over 2\pi i}\int_\gamma g_k(\xi)\,d\xi\\ &= {1\over 2\pi i}\int_\gamma \lim_k g_k(\xi)\,d\xi\\ &= {1\over 2\pi i}\int_\gamma g(\xi)\,d\xi\\ &= {1\over 2\pi i}\int_\gamma {f(\xi) \over \xi - z} \,d\xi ,\end{align*} where we’ve used uniform convergence on \gamma to commute the limit and integral. So f has an integral representation, making it differentiable.

That f_k'\to f': \begin{align*} \lim_k f_k'(z) &= \lim_k {1\over 2\pi i}\int_\gamma {f_k(\xi) \over (\xi - z)^2 }\,d\xi\\ &= {1\over 2\pi i}\int_\gamma \lim_k {f_k(\xi) \over (\xi - z)^2}\,d\xi\\ &= {1\over 2\pi i}\int_\gamma {f(\xi) \over (\xi - z)^2}\,d\xi\\ &= f'(z) .\end{align*}

That the convergence is locally uniform: first consider what happens on an closed discs K = D with \gamma \coloneqq{{\partial}}{D}. Then for z\in D, \begin{align*} {\left\lvert {f'(z) - f_k'(z) } \right\rvert} &= {\left\lvert {{1\over 2\pi i} \int_{\gamma} {f(\xi) - f_k(\xi) \over (\xi - z)^2}\,d\xi} \right\rvert}\\ &\leq {1\over 2\pi}\int_{\gamma} {{\left\lvert {f(\xi) - f_k(\xi) } \right\rvert} \over {\left\lvert {\xi - z} \right\rvert}^2} \,d\xi\\ &\leq {1\over 2\pi}\int_{\gamma } { \sup_{\xi \in \gamma} {\left\lvert {f(\xi) - f_k(\xi) } \right\rvert} \over r^2 } \,d\xi\\ &= {1\over 2\pi} { \sup_{\xi \in \gamma } {\left\lvert {f(\xi) - f_k(\xi) } \right\rvert} \over r^2} \cdot {2\pi r} \\ &= { \sup_{\xi \in \gamma } {\left\lvert {f(\xi) - f_k(\xi) } \right\rvert}}/r .\end{align*} Since \gamma is compact, using locally uniform convergence of f_k\to f, there exists an n_0 such that n\geq n_0 bounds this \sup by {\varepsilon}. For K arbitrary, cover K by discs D_z for every z\in K and extract a finite cover \left\{{D_{z_k}}\right\}_{k\leq N}. Produce n_0, n_1,\cdots, n_N as in the above argument, and take n\coloneqq\max\left\{{n_k}\right\}_{k\leq N} to obtain uniform convergence on every D_{z_k} and thus on K.

Radius of Convergence

exercise (Radius of convergence):

Find the radius of convergence of

  • \sum a^k z^k for a a constant.
  • \sum a^{k^2}z^k

#complex/exercise/completed

solution:

    
  • R = 1/\limsup {\left\lvert {a^k} \right\rvert}^{1\over k} = 1\over {\left\lvert {a} \right\rvert}
  • R = 1/\limsup {\left\lvert {a^{k^2}} \right\rvert}^{1\over k} = 1/\limsup {\left\lvert {a} \right\rvert}^k, so R=\infty if {\left\lvert {a} \right\rvert}< 1, R=0 if {\left\lvert {a} \right\rvert}<1, and R=1 if {\left\lvert {a} \right\rvert} = 1.
exercise (Radius of convergence):

Find the radius of convergences for the power series expansion of \sqrt{z} about z_0 = 4 +3i. Repeat with z_1=-4+3i.

#complex/exercise/completed

solution:

Choose the principal branch of \log, so take a branch cut at {\mathbb{R}}_{\leq 0}, to define z^{1\over 2} = e^{{1\over 2}\log(z)}. The radius of convergence is the distance to the nearest singularity or branch cut, so note that f(z) = z^{1\over 2} is singular at z=0, so we compute {\left\lvert {z_0 - 0} \right\rvert} = {\left\lvert {4+3i} \right\rvert} = 5. The distance to the branch is also 5, so R=5.

For z_1, the distance to zero is {\left\lvert {4+3i - 0} \right\rvert} = 5 but the distance to the branch is 4, so R=4.

Note the subtle distinction: the series converges to f in a disc {\left\lvert {z-z_0} \right\rvert}<1, but the series itself converges in larger discs.

exercise (Convergence of a \ZZ\dashindex series):

Find the radius of convergence for \begin{align*} f(z) \coloneqq\sum_{k\in {\mathbb{Z}}} 2^{-{\left\lvert {k} \right\rvert}}z^k .\end{align*}

#complex/exercise/completed

solution:

Break this up into a principal part at z=0 and a holomorphic part: \begin{align*} f(z) = f_1(z) + f_2(z) \coloneqq\sum_{k\geq 1} 2^{-k}z^{-k} + \sum_{k\geq 0} 2^{-k}z^k .\end{align*}

Using the ratio test: \begin{align*} f_1(z) < \infty &\impliedby \limsup_k {\left\lvert {2^{-k}z^{-k}} \right\rvert}^{1\over k} < 1 \iff \limsup_k {\left\lvert {1\over 2z} \right\rvert} < 1 \iff {1\over 2}< {\left\lvert {z} \right\rvert} \\ f_2(z) < \infty &\impliedby \limsup_k {\left\lvert {2^{-k}z^{k}} \right\rvert}^{1\over k} < 1 \iff \limsup_k {\left\lvert {z\over 2} \right\rvert}< 1 \iff {\left\lvert {z} \right\rvert} < 2 .\end{align*}

So f converges on {1\over 2}< {\left\lvert {z} \right\rvert} < 2.

Finding Laurent Expansions

exercise (Expanding Laurent series in different regions):

Expand f(z) = {1\over z(z-1)} in both

  • {\left\lvert {z} \right\rvert} < 1
  • {\left\lvert {z} \right\rvert} > 1

#complex/exercise/completed

solution:

\begin{align*} {1\over z(z-1)} = -{1\over z}{1 \over 1-z} = -{1\over z}\sum z^k .\end{align*} and \begin{align*} {1\over z(z-1)} = {1\over z^2(1 - {1\over z})} = {1\over z^2} \sum \qty{1\over z}^k .\end{align*}

exercise (Laurent expansions about different points):

Find the Laurent expansion about z=0 and z=1 respectively of the following function: \begin{align*} f(z) \coloneqq{z+1 \over z(z-1)} .\end{align*}

#complex/exercise/completed

solution:

Note: once you see that everything is in terms of powers of (z-z_0), you’re essentially done. For z=0: \begin{align*} {z+1 \over z(z-1)} &= {1\over z} {z+1 \over z-1} \\ &= -{z+1\over z} {1\over 1-z} \\ &= -\qty{1 + {1\over z}}\sum_{k\geq 0} z^k .\end{align*}

For z=1: \begin{align*} {z+1 \over z(z-1)} &= {1\over z-1}\qty{1 + {1\over z} } \\ &= {1\over z-1}\qty{1 + {1\over 1 - (1-z)} } \\ &= {1\over z-1} \qty{1 + \sum_{k\geq 0} (1-z)^k } \\ &= {1\over z-1} \qty{1 + \sum_{k\geq 0} (-1)^k (z-1)^k } .\end{align*}

exercise (Laurent expansions on annuli):

Find a Laurent expansion for f(z) \coloneqq{1\over (z-3)(z-1)} on the 3 annular regions centered at 0 where f is holomorphic.

figures/2021-12-19_22-39-19.png

#complex/exercise/completed

solution:

The three regions are

  • 0 \leq {\left\lvert {z} \right\rvert} < 1
  • 1 < {\left\lvert {z} \right\rvert} < 3
  • 3 < {\left\lvert {z} \right\rvert} < \infty

Write f in terms of its principal parts at z=1 and z=3 by computing the residues:

  • \mathop{\mathrm{Res}}_{z=1}f(z) = (z-1)f(z)\Big|_{z=1} = {1\over z-3}\Big|_{z=1} = -{1\over 2}
  • \mathop{\mathrm{Res}}_{z=3}f(z) = (z-3)f(z)\Big|_{z=3} = {1\over z-1}\Big|_{z=3} = {1\over 2}

Thus \begin{align*} f(z) = {-1/2 \over z-1} + {1/2 \over z-3} .\end{align*}

Now find the two expansions for each term:

\begin{align*} {-1/2 \over z-1} &= {1/2 \over 1-z} = {1\over 2}\sum_{k\geq 0} z^k && 0 < {\left\lvert {z} \right\rvert} < 1 \\ {-1/2 \over z-1} &= -{1\over 2}{z^{-1}\over z^{-1}- 1} = -{1\over 2z}{1\over 1-z^{-1}} = -{1\over 2}\sum_{k\geq 0}z^{-k-1} && 1 < {\left\lvert {z} \right\rvert} < \infty \\ {1/2\over z-3} &= -{1\over 2}{1\over 3-z} = -{1\over 6}{1\over 1-{z\over 3}} = -{1\over 6}\sum_{k\geq 0}3^{-k} z^k && 0 < {\left\lvert {z} \right\rvert} < 3 \\ {1/2\over z-3} &= {1\over 2z}{1\over 1-3z^{-1}} = {1\over 2z} \sum_{k\geq 0}3^kz^{-k} = {1\over 2}\sum_{k\geq 0}3^k z^{-k-1} && 3 < {\left\lvert {z} \right\rvert} < \infty .\end{align*}

Now, just combinatorics to pick the various series that converge on the desired regions: \begin{align*} 0 \leq {\left\lvert {z} \right\rvert} < 1 \qquad & f(z) = {1\over 2}\sum_{k\geq 0}z^k - {1\over 6}\sum_{k\geq 0} 3^{-k}z^k \\ 1 \leq {\left\lvert {z} \right\rvert} < 3 \qquad & f(z) = -{1\over 2}\sum_{k\geq 0}z^{-k-1} - {1\over 6}\sum_{k\geq 0} 3^{-k}z^k \\ 3 \leq {\left\lvert {z} \right\rvert} < \infty \qquad & f(z) = - {1\over 2}\sum_{k\geq 0}z^{-k-1} + {1\over 2}\sum_{k\geq 0} 3^{k}z^{-k-1} .\end{align*}

exercise (Cosine expansion in z\inv):

Expand f(z) = z^2\cos\qty{z\over 3} about z=0.

solution:

\begin{align*} f(z) = z^2\qty{ 1 + {1\over 2!}\qty{1\over 3z}^2 + {1\over 4!}\qty{1\over 3z}^4 } = z^2 + {1\over 2! \cdot 3^2} + {1\over 4! \cdot 3^4}z^{-2} + \cdots .\end{align*}

exercise (Expansion for a reciprocal):

Find a power series expansion of \begin{align*} f(z) = {1\over e^z-1} .\end{align*}

#complex/exercise/completed

solution:

One way: polynomial long division. \begin{align*} {1\over e^z-1} &= {1\over z + {1\over 2}z^2 + {1\over 6}z^2 + \cdots } \\ &= {1\over z}\qty{1 - {1\over 2}z + \qty{-{1\over 6} + {1\over 4} }z^2 + \cdots } \\ &= z^{-1}- {1\over 2} + {1\over 12}z + { \mathsf{O}} (z^3) .\end{align*} Alternatively, use geometric series. Note that something like {1\over 1-e^z} = \sum_{k\geq 0} e^{kz} won’t converge, and won’t even be calculable since each e^{kz} contributes a constant term! \begin{align*} {1\over e^z-1} &= {1\over z + {1\over 2}z^2 + {1\over 6}z^3 + \cdots } \\ &= {1\over z(1 + {1\over 2}z + {1\over 6}z^2 + \cdots) } \\ &= z^{-1}{1\over 1 + q(z) } \qquad q(z) \coloneqq{1\over 2}z + {1\over 6}z^2 + \cdots \\ &= z^{-1}\sum_{k\geq 0}(-q(z))^k \\ &= z^{-1}\qty{1 - q(z) + q(z)^2 - \cdots } \\ &= z^{-1}\qty{1 - \qty{{1\over 2}z + {1\over 6}z^2 + \cdots } + \qty{{1\over 2}z + {1\over 6}z^2 + \cdots }^2 - \cdots } \\ &= z^{-1}\qty{ 1 - {1\over 2} z + \qty{-{1\over 6} + \qty{1\over 2}^2 } z^2 + { \mathsf{O}} (z^3) } \\ &= z^{-1}- {1\over 2} + {1\over 12}z + { \mathsf{O}} (z^2) .\end{align*}

exercise (Expansion at an essential singularity):

Find a Laurent expansion at z=0 for \begin{align*} f(z) \coloneqq e^{1\over z}\cos\qty{1\over z} .\end{align*}

#complex/exercise/completed

solution:

Note that a direct expansion won’t work, since there are infinitely many contributions to the constant term. Instead, a trick: consider g(z) \coloneqq e^z\cos(z), so g(1/z ) = f(z). Expanding g is easier: \begin{align*} g(z) &= e^{z}\cos(z)\\ &= {1\over 2}e^z\qty{e^{iz} + e^{-iz}} \\ &= {1\over 2}\qty{e^{(1+i)z} + e^{(1-i)z}} \\ &= {1\over 2} \sum_{k\geq 0}\qty{(1+i)^k + (1-i)^k} {z^k\over k!} \\ \implies f(z) &= {1\over 2} \sum_{k\geq 0}\qty{(1+i)^k + (1-i)^k} {1 \over k!z^k } \\ .\end{align*}

exercise (Expansion at an essential singularity):

Find a Laurent expansion about z=0 of \begin{align*} f(z) \coloneqq\cos\qty{1- {1\over z}} ,\end{align*} and compute the “residue” coefficient c_{-1}.

#complex/exercise/completed

solution:

Write g(z) \coloneqq\cos(1-z), so g(1/z) = f(z), and expand: \begin{align*} g(z) &= \cos(1-z) \\ &= {1\over 2}\qty{e^{i(1-z)} + e^{-i(1-z)}} \\ &= {1\over 2}\qty{e^i e^{-iz} + e^{-i} e^{iz}}\\ &= {1\over 2}\sum_{k\geq 0} \qty{ (-i)^k e^i + i^k e^{-i} } {z^k \over k!} \\ \implies f(z) &= {1\over 2}\sum_{k\geq 0} \qty{ ( (-i)^k e^i + i^k e^{-i} } {1 \over k!z^k} .\end{align*}

Taking k=1 yields \begin{align*} c_{-1} = {-ie^i + ie^{-i} \over 2} = -i\cdot {e^i - e^{-i}\over 2} = {e^i - e^{-i}\over 2i} = \sin(1) .\end{align*}

exercise (Laurent expanding exponentials):

Find a Laurent expansion that converges for {\left\lvert {z} \right\rvert} > 1 of \begin{align*} f(z) \coloneqq{1 \over e^{1-z}} .\end{align*}

#complex/exercise/completed

solution:

\begin{align*} f(z) = e^{-(1-z)} = e^{z-1} = e^{-1}e^z = e^{-1}\sum_{k\geq 0} {z^k\over k!} .\end{align*} Since e^z is entire, this converges on {\mathbb{C}}.

exercise (Laurent expanding tricky exponentials):

Find a Laurent expansion for \begin{align*} f(z) = {1\over 1 + e^z} \end{align*} about z_0 = 0 and z_1 = i\pi.

#complex/exercise/completed

solution:

At z=0, we can use a geometric series approach since {\left\lvert {e^z} \right\rvert} = e^{\Re(z)} \leq 1 near 0. However, we still have to get rid of the leading 1 in the expansion of e^z in order to get a constant coefficient. \begin{align*} {1\over 1 + e^z} &= {1\over 1 + 1 + z + {1\over 2!}z^2 + {1\over 3!} z^3 + { \mathsf{O}} (z^4)} \\ &= {1\over 2 + z + {1\over 2!}z^2 + {1\over 3!} z^3 + { \mathsf{O}} (z^4) } \\ &= {1\over 2} {1\over 1 + {1\over 2} z + {1\over 2\cdot 2!}z^2 + {1\over 2\cdot 3!} z^3 + { \mathsf{O}} (z^4) } \\ &= {1\over 2}{1\over 1 - (-p(z)) } \qquad p(z) \coloneqq{1\over 2}z + {1\over 2\cdot 2!}z^2 + {1\over 2\cdot 3!}z^3 + { \mathsf{O}} (z^4) \\ &= {1\over 2} \sum_{k\geq 0} (-p(z))^k \\ &= {1\over 2}\Big[ 1 - \qty{{1\over 2}z + {1\over 2\cdot 2!}z^2 + {1\over 2\cdot 3!}z^3 + { \mathsf{O}} \qty{z^4} } \\ &\qquad + \qty{ {1\over 2}z + {1\over 2\cdot 2!}z^2 + {1\over 2\cdot 3!}z^3 + { \mathsf{O}} \qty{z^4} }^2 \\ &\qquad - \qty{{1\over 2} z + {1\over 2\cdot 2!}z^2 + {1\over 2\cdot 3!}z^3 + { \mathsf{O}} \qty{z^4} }^3 \\ &\qquad - { \mathsf{O}} (z^4) \Big]\\ &= {1\over 2} \Big[ 1 + z\qty{- {1\over 2}} + z^2\qty{- {1\over 2\cdot 2!} + \qty{1\over 2}^2}\\ &\qquad + z^3 \Big( -{1\over 2\cdot 3! } +\left[ \qty{1\over 2}^3 + {1\over 2}{1\over 2\cdot 2!}\right] - \qty{1\over 2}^3 \Big) \\ &\qquad + { \mathsf{O}} (z^4) \Big]\\ &= {1\over 2} - {1\over 4}z + 0z^2 + {1\over 48}z^3 + { \mathsf{O}} (z^4) .\end{align*}

Expanding at z-i\pi: quite a bit easier. Let \omega \coloneqq z-i\pi, then \begin{align*} {1\over 1 + e^z} &= {1\over 1 + e^{z-i\pi}e^{i\pi}} \\ &= {1\over 1 - e^{\omega} } \\ &= {1 \over -\omega - {1\over 2!}\omega^2 - {1\over 3!}\omega^3 - { \mathsf{O}} (\omega^4) } \\ &= -{1\over \omega} {1 \over 1 + {1\over 2!}\omega + {1\over 3!}\omega^2 + { \mathsf{O}} (\omega^3) } \\ &= -{1\over \omega}{1\over 1-(- p(z) ) } \qquad p(z) \coloneqq\sum_{k\geq 2}{\omega^{k-1}\over k!} \\ &= -{1\over \omega} \sum_{k\geq 0} (-p(z))^k \\ &= -{1\over \omega} \left[ 1 - \qty{{1\over 2!}\omega + {1\over 3!}\omega^2 + { \mathsf{O}} (\omega^3)} + \qty{{1\over 2!}\omega + {1\over 3!}\omega^2 + { \mathsf{O}} (\omega^3)}^2 - { \mathsf{O}} (\omega^3) \right] \\ &= -{1\over \omega} \left[ 1 + \omega\qty{-{1\over 2!}} + \omega^2\qty{-{1\over 3!} + \qty{1\over 2!}^2} + { \mathsf{O}} (\omega^3) \right] \\ &= -{1\over w} + {1\over 2} - {1\over 12}\omega + { \mathsf{O}} (\omega^2) .\end{align*}

New Things in {\mathbb{C}}

exercise (Cauchy integral formula for coefficients):

Show that if f(z) \sum_{k\in {\mathbb{Z}}} c_k (z-z_0)^k, then \begin{align*} c_k = {1\over 2\pi i}\int_\gamma {f(z) \over (z-z_0)^{n+1}}\,dz ,\end{align*} and that this converges in an annulus D_R(z_0)\setminus\mkern 1.5mu\overline{\mkern-1.5muD_r(z_0)\mkern-1.5mu}\mkern 1.5mu where \begin{align*} r=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{-n}\right|} \text { and } R=\frac{1}{\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}} \text {. } .\end{align*}

Hint: start with \begin{align*} f(z)=\frac{1}{2 \pi i} \oint_{\left|w-z_{0}\right|=s_{2}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \oint_{\left|w-z_{0}\right|=s_{1}} \frac{f(w)}{w-z} d w ,\end{align*} and try to obtain a geometric series to obtain \begin{align*} f(z)=\sum_{j=-\infty}^{\infty}\left(\frac{1}{2 \pi i} \oint_{\left|w-z_{0}\right|=r} \frac{f(w)}{\left(w-z_{0}\right)^{j+1}} d w\right)\left(z-z_{0}\right)^{j} .\end{align*}

#complex/exercise/work

#complex/exercise/completed #complex/exercise/work