Given two sequences of real numbers {ak},{bk} which satisfy
- The sequence of partial sums {An} is bounded,
- bk↘0.
then ∑k≥1akbk<∞.
proof (?):
Use summation by parts. For a fixed ∑akbk, write m∑n=1xnYn+m∑n=1Xnyn+1=XmYm+1. Set xn:=an,yN:=bn−bn−1, so Xn=An and Yn=bn as a telescoping sum. Importantly, all yn are negative, so |yn|=|bn−bn−1|=bn−1−bn, and moreover anbn=xnYn for all n. We have ∑n≥1anbn=lim where in the last step we’ve used that \begin{align*} {\left\lvert {X_N} \right\rvert} = {\left\lvert {A_N} \right\rvert}\leq M \implies {\left\lvert {X_N Y_{N} } \right\rvert} = {\left\lvert {X_N} \right\rvert} {\left\lvert {b_{n+1}} \right\rvert} \leq M b_{n+1} \to 0 .\end{align*} So it suffices to bound the latter sum: \begin{align*} \sum_{k\geq n}{\left\lvert { X_k y_{k+1} } \right\rvert} &\leq M \sum_{k\geq 1} {\left\lvert {y_{k+1}} \right\rvert}\\ &\leq M \sum_{k\geq 1} b_{k} - b_{k+1} \\ &\leq 2M(b_1 - b_{n+1})\\ &\leq 2M b_1 .\end{align*}
If \sum_{k=1}^\infty c_k z^j converges on {\left\lvert {z} \right\rvert} < 1 then \begin{align*} \lim_{z\to 1^-} \sum_{k\in {\mathbb{N}}} c_k z^k = \sum_{k\in {\mathbb{N}}} c_k .\end{align*}
If f(z) \coloneqq\sum c_k z^k is a power series with c_k \in {\mathbb{R}}^{\geq 0} and c_k\searrow 0, then f converges on S^1 except possibly at z=1.
What is the value of the alternating harmonic series? Integrate a geometric series to obtain \begin{align*} \sum {(-1)^k z^k \over n} = \log(z+1) && {\left\lvert {z} \right\rvert} < 1 .\end{align*} Since c_k \coloneqq(-1)^k/k \searrow 0, this converges at z=1, and by Abel’s theorem f(1) = \log(2).
The converse to Abel’s theorem is false: take f(z) = \sum (-z)^n = 1/(1+z). Then f(1) = 1-1+1-\cdots diverges at 1, but 1/1+1 = 1/2. So the limit s\coloneqq\lim_{x\to 1^-} f(x) 1/2, but \sum a_n doesn’t converge to s.
Setting A_n \coloneqq\sum_{k=1}^n b_k and B_0 \coloneqq 0, \begin{align*} \sum_{k=m}^n a_k b_k &= A_nb_n - A_{m-1} b_m - \sum_{k=m}^{n-1} A_k(b_{k+1} - b_{k}) .\end{align*} Compare this to integrating by parts: \begin{align*} \int_a^b f g = F(b)g(b) - F(a)g(a) - \int_a^b Fg' .\end{align*} How to remember: set \Delta g_k \coloneqq g_{k+1} - g_k and \mathbf{I} g_k = g_{k+1}, then \begin{align*} \sum_{k=m}^n f_k \cdot \Delta g_k = f_{n+1} g_{n+1} - f_m g_m - \sum_{k=m}^n \mathbf{I}g_{k} \cdot \Delta f_k .\end{align*}
Note there is a useful form for taking the product of sums: \begin{align*} A_{n} B_{n}=\sum_{k=1}^{n} A_{k} b_{k}+\sum_{k=1}^{n} a_{k} B_{k-1} .\end{align*}
proof (?):
An inelegant proof: define A_n \coloneqq\sum_{k\leq n} a_k, use that a_k = A_k - A_{k-1}, reindex, and peel a top/bottom term off of each sum to pattern-match.\
Behold: \begin{align*} \sum_{m\leq k \leq n} a_k b_k &= \sum_{m\leq k \leq n} (A_k - A_{k-1}) b_k \\ &= \sum_{m\leq k \leq n} A_kb_k - \sum_{m\leq k \leq n} A_{k-1} b_k \\ &= \sum_{m\leq k \leq n} A_kb_k - \sum_{m-1\leq k \leq n-1} A_{k} b_{k+1} \\ &= A_nb_n + \sum_{m\leq k \leq n-1} A_kb_k - \sum_{m-1\leq k \leq n-1} A_{k} b_{k+1} \\ &= A_nb_n - A_{m-1} b_{m} + \sum_{m\leq k \leq n-1} A_kb_k - \sum_{m\leq k \leq n-1} A_{k} b_{k+1} \\ &= A_nb_n - A_{m-1} b_{m} + \sum_{m\leq k \leq n-1} A_k(b_k - b_{k+1}) \\ &= A_nb_n - A_{m-1} b_{m} - \sum_{m\leq k \leq n-1} A_k(b_{k+1} - b_{k}) .\end{align*}
Exercises
Show that
- \sum kz^k diverges on S^1.
- \sum k^{-2} z^k converges on S^1.
- \sum k^{-1}z^k converges on S^1\setminus\left\{{1}\right\} and diverges at 1.
solution:
- Use that {\left\lvert {z^k} \right\rvert} = 1 and \sum c_kz^k < \infty \implies {\left\lvert {c_k} \right\rvert} \to 0, but {\left\lvert {kz^k} \right\rvert} = {\left\lvert {k} \right\rvert} \to \infty on S^1.
- Use that absolutely convergent implies convergent, and \sum {\left\lvert {k^{-2} z^k} \right\rvert} = \sum {\left\lvert {k^{-2}} \right\rvert} converges by the p{\hbox{-}}test.
- If z=1, this is the harmonic series. Otherwise take a_k = 1/k, b_k = e^{i k \theta} where \theta \in (0, 2\pi) is some constant, and apply Dirichlet’s test. It suffices to bound the partial sums of the b_k. Recalling that \sum_{k\leq N} r^k = (1-r^{N+1}) / (1-r), \begin{align*} {\left\lVert { \sum_{k\leq m} e^{ik\theta } } \right\rVert} = {\left\lVert {1 - e^{i(m+1)\theta} \over 1 - e^{i\theta}} \right\rVert} \leq {2 \over {\left\lVert { 1- e^{i\theta}} \right\rVert}} \coloneqq M ,\end{align*} which is a constant. Here we’ve used that two points on S^1 are at most distance 2 from each other.
Show that \prod_{n\in {\mathbb{Z}}} (1 + a_n) < \infty if \left\{{a_n}\right\} \in \ell_1({\mathbb{Z}}).
Use summation by parts to show that \sin(n)/n converges.
Show that {1\over z} \sum_{k=1}^\infty {z^k \over k} converges on S^1 \setminus\left\{{1}\right\} using summation by parts.