Cauchy-Goursat

definition (Complex Integral):

γfdz:=If(γ(t))γ(t)dt=γ(u+iv)dx+(v+iu)dy.

theorem (Cauchy-Goursat Theorem):

If f is holomorphic on a region Ω with π1Ω=1, then for any closed path γΩ, γf(z)dz=0.

slogan:

Closed path integrals of holomorphic functions vanish.

proof (of Cauchy):

Apply Stokes’: Df(z)dz=Dd(f(z)dz)=D(fzdz+f¯zd¯z)dz=Dfzdzdz+0d¯zdz=0.