definition (Complex Integral):
∫γfdz:=∫If(γ(t))γ′(t)dt=∫γ(u+iv)dx+(−v+iu)dy.
theorem (Cauchy-Goursat Theorem):
If f is holomorphic on a region Ω with π1Ω=1, then for any closed path γ⊆Ω, ∫γf(z)dz=0.
slogan:
Closed path integrals of holomorphic functions vanish.
proof (of Cauchy):
Apply Stokes’: ∮∂Df(z)dz=∫Dd(f(z)dz)=∫D(∂f∂zdz+∂f∂¯zd¯z)∧dz=∫D∂f∂zdz∧dz+0d¯z∧dz=0.