Fall 2020.4 (Schwarz double root) #stuck #complex/qual/completed
Let D:={z:|z|<1} denote the open unit disk. Suppose that f(z):D→D is holomorphic, and that there exists a∈D∖{0} such that f(a)=f(−a)=0.
-
Prove that |f(0)|≤|a|2.
-
What can you conclude when |f(0)|=|a|2?
solution:
Part 1:
Write ψa(z):=a−z1−¯az for the Blaschke factor of a, and define g(z):=f(z)ψa(z)ψ−a(z).
|g(z)|≤1 on D.
proof (of claim):
|ψa(z)|=1 on ∂D, so lim for any fixed t. Then for any f with {\left\lvert {f} \right\rvert} \leq 1 in {\mathbb{D}}, \begin{align*} {\left\lvert {f(re^{it} ) \over \psi_a(re^{it} ) } \right\rvert} \leq {1\over \psi_a(re^{it})} \leq {1\over \sup_{t} \psi_a(re^{it}) } \overset{r\to 1}\longrightarrow 1 .\end{align*} So apply this to f=g and f={g\over \psi_a} to get it for {f\over \psi_a \psi_{-a}}.
In particular, {\left\lvert {g(0)} \right\rvert} \leq 1, so \begin{align*} 1\geq {\left\lvert {g(0)} \right\rvert} = {{\left\lvert {f(0)} \right\rvert} \over {\left\lvert {B_a(0)} \right\rvert} \cdot {\left\lvert {B_{-a}(0)} \right\rvert}} = {{\left\lvert {f(0)} \right\rvert} \over {\left\lvert {a} \right\rvert}^2} \implies {\left\lvert {a} \right\rvert}^2 \geq {\left\lvert {f(0)} \right\rvert} .\end{align*}
Part 2: Applying Schwarz-Pick: \begin{align*} {\left\lvert {f'(0)} \right\rvert} \leq {1 - {\left\lvert {f(0)} \right\rvert}^2 \over 1 - {\left\lvert {0} \right\rvert}^2 } = 1-{\left\lvert {a} \right\rvert}^2 < 1 ,\end{align*} using that a\neq 0, so f is a contraction.
Can write f_e(z) \coloneqq{f(a) + f(-a) \over 2} to write f_e(z) = g(z^2). Compose with some \psi_a to get 0\to 0 and apply Schwarz – unclear how to unwind what happens in the case of equality though.
Fall 2021.5 #complex/qual/completed
Assume f is an entire function such that |f(z)|=1 on |z|=1. Prove that f(z)=e^{i \theta} z^{n}, where \theta is a real number and n a non-negative integer.
Suggestion: First use the maximum and minimum modulus theorem to show \begin{align*} f(z)=e^{i \theta} \prod_{k=1}^{n} \frac{z-z_{k}}{1-\mkern 1.5mu\overline{\mkern-1.5muz_{k}\mkern-1.5mu}\mkern 1.5mu z} \end{align*} if f has zeros.
solution:
First show the hint: assume f has nonzero zeros. Write Z(f) \coloneqq f^{-1}(0) for the set of zeros in \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu.
If we assume f is continuous on {\mathbb{D}}, then {\sharp}Z(f) < \infty
proof (?):
Suppose {\sharp}Z(f) = \infty, then by compactness of \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu there is a limit point z_0. If z_0 \in {\mathbb{D}}, then there is a sequence \left\{{z_k}\right\}\to z_0 with f(z_k) = 0 for every k, so f is zero on a set S\coloneqq\left\{{z_k}\right\}_{k\geq 1} \cup\left\{{z_0}\right\} with an accumulation point and this forces f\equiv 0 on \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu by the identity principle, contradicting {\left\lvert {f} \right\rvert} = 1 on {{\partial}}{\mathbb{D}}>
Otherwise, if z_0\in {{\partial}}{\mathbb{D}}, using continuity of f we have f(z_k) = 0 for all k and z_k\to z_0 so f(z_0) = 0, again contradiicting {\left\lvert {f} \right\rvert} = 1 on {{\partial}}{\mathbb{D}}.
So write Z(f) = \left\{{z_1,\cdots, z_m}\right\} and define \begin{align*} g(z) \coloneqq\prod_{1\leq k \leq m} {z-z_k \over 1 - \mkern 1.5mu\overline{\mkern-1.5muz_k\mkern-1.5mu}\mkern 1.5mu z}, \quad h(z) \coloneqq{f(z) \over g(z)} .\end{align*}
h(z) \equiv 1 is constant on \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu, so that f = \lambda g for some \lambda \in S^1, i.e. \lambda = e^{i\theta} for some \theta.
proof (?):
Note that h cancels all zeros of f, so h is nonzero and holomorphic on \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu. Moreover {\left\lvert {g(z)} \right\rvert} \leq 1 on \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu since these are well-known to be in \mathop{\mathrm{Aut}}({\mathbb{D}}). It’s also well-known that {\left\lvert {g(z)} \right\rvert} = 1 on {{\partial}}{\mathbb{D}}. Thus {\left\lvert {h(z)} \right\rvert} = 1 and {\left\lvert {1\over h(z)} \right\rvert} =1 on {{\partial}}{\mathbb{D}}, and by the maximum modulus principle, \begin{align*} {\left\lvert {h(z)} \right\rvert} \leq 1 \quad\text{ and }\quad {\left\lvert {1\over h(z)} \right\rvert}\leq 1 \quad \text{ on } {\mathbb{D}} ,\end{align*} forcing {\left\lvert {h(z)} \right\rvert}\equiv 1 and thus h(z) = e^{i\theta} for some \theta.
So we now have \begin{align*} f(z) = e^{i\theta} \prod_{1\leq k\leq m} {z-z_k \over 1 -\mkern 1.5mu\overline{\mkern-1.5muz_k\mkern-1.5mu}\mkern 1.5mu z} ,\end{align*} which has poles at points z for which \mkern 1.5mu\overline{\mkern-1.5muz_k\mkern-1.5mu}\mkern 1.5muz=1 for some z_k\in Z(f). However, since we assumed f was entire, it can have no such poles, which forces z_k = 0 for all k. But then \begin{align*} f(z) = e^{i\theta}\prod_{1\leq k \leq m}{z- 0 \over 1 - 0\cdot z} = e^{i\theta}z^m .\end{align*}
Fall 2021.6 (Schwarz manipulation) #complex/qual/completed
Show that if f: D(0, R) \rightarrow \mathbb{C} is holomorphic, with |f(z)| \leq M for some M>0, then \begin{align*} \left|\frac{f(z)-f(0)}{M^{2}-\overline{f(0)} f(z)}\right| \leq \frac{|z|}{M R} . \end{align*}
The strategy:
- Write the RHS as a. Note that we need to get rid of the M^2 on the LHS, so keep the M around and write a \coloneqq z/R so z = aR.
-
Make the substitution to get
\begin{align*}
{\left\lvert {f(aR) - f(0) \over M^2 - \mkern 1.5mu\overline{\mkern-1.5muf(0)\mkern-1.5mu}\mkern 1.5mu f(aR) } \right\rvert} \leq M^{-1}{\left\lvert {a} \right\rvert} \\
\implies
{\left\lvert {M\qty{ f(aR) - f(0)} \over M^2 - \mkern 1.5mu\overline{\mkern-1.5muf(0)\mkern-1.5mu}\mkern 1.5mu f(aR) } \right\rvert} \leq {\left\lvert {a} \right\rvert} \\
{\left\lvert { f(aR)/M - f(0)/M \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(0)\mkern-1.5mu}\mkern 1.5mu f(aR)/M^2 } \right\rvert} \leq {\left\lvert {a} \right\rvert}
.\end{align*}
- Recognize the LHS as \psi_w(g(a)) for w\coloneqq f(0)/M and g(a) \coloneqq f(aR)/M.
solution:
Proof due to Swaroop Hegde!
Fix R, M and make a clever choice: define \begin{align*} F: {\mathbb{D}}&\to {\mathbb{C}}\\ z &\mapsto {f(Rz) \over M} .\end{align*} Write a\coloneqq F(0) and consider the Blaschke factor \begin{align*} \psi_a(z) \coloneqq{a-z \over 1-\mkern 1.5mu\overline{\mkern-1.5mua\mkern-1.5mu}\mkern 1.5mu z} \in \mathop{\mathrm{Aut}}({\mathbb{D}}) ,\end{align*} and define \begin{align*} g: {\mathbb{D}}&\to {\mathbb{D}}\\ z &\mapsto (\psi_a \circ F)(z) .\end{align*} Then g(0) = 0 and {\left\lvert {g(z)} \right\rvert} \leq 1 for all z\in {\mathbb{D}}, so by Schwarz we have {\left\lvert {g(z)} \right\rvert} \leq {\left\lvert {z} \right\rvert} for all z\in {\mathbb{D}}. Thus for all z\in {\mathbb{D}}, \begin{align*} &{\left\lvert {g(z)} \right\rvert} \leq z \\ \\ \iff & {\left\lvert {\psi_a(F(z)) } \right\rvert} \leq {\left\lvert {z} \right\rvert} \\ \\ \iff & {\left\lvert { {f(Rz) \over M} - a \over 1 - {\mkern 1.5mu\overline{\mkern-1.5mua\mkern-1.5mu}\mkern 1.5mu f(Rz) \over M} } \right\rvert} \leq {\left\lvert {z} \right\rvert} \\ \\ \iff & {\left\lvert {f(Rz) - f(0) \over 1 - {\mkern 1.5mu\overline{\mkern-1.5muf(0)\mkern-1.5mu}\mkern 1.5mu f(Rz) \over M^2 } } \right\rvert} \leq {\left\lvert {z} \right\rvert} \\ \\ \iff & {\left\lvert {f(Rz) - f(0) \over M^2 - \mkern 1.5mu\overline{\mkern-1.5muf(0)\mkern-1.5mu}\mkern 1.5mu f(Rz) } \right\rvert} \leq {{\left\lvert {z} \right\rvert} \over M} \\ \\ \iff & {\left\lvert {f(w) - f(0) \over M^2 - \mkern 1.5mu\overline{\mkern-1.5muf(0)\mkern-1.5mu}\mkern 1.5mu f(w) } \right\rvert} \leq {{\left\lvert {w} \right\rvert} \over MR} ,\end{align*} which holds for all w\in {\mathbb{D}} by replacing Rz with w (i.e. to show this equality for arbitrary w\in {\mathbb{D}}, write w = Rz for some z\in {\mathbb{D}} and run this chain of inequalities backward).
Scaling Schwarz #complex/exercise/completed
Let \mkern 1.5mu\overline{\mkern-1.5muB\mkern-1.5mu}\mkern 1.5mu(a, r) denote the closed disc of radius r about a\in {\mathbb{C}}. Let f be holomorphic on an open set containing \mkern 1.5mu\overline{\mkern-1.5muB\mkern-1.5mu}\mkern 1.5mu(a, r) and let \begin{align*} M \coloneqq\sup_{z\in \mkern 1.5mu\overline{\mkern-1.5muB\mkern-1.5mu}\mkern 1.5mu(a, r)} {\left\lvert {f(z)} \right\rvert} .\end{align*}
Prove that \begin{align*} z\in \mkern 1.5mu\overline{\mkern-1.5muB\mkern-1.5mu}\mkern 1.5mu\qty{a, {r\over 2}},\,z\neq a, \qquad {{\left\lvert { f(z) - f(a)} \right\rvert} \over {\left\lvert {z-a} \right\rvert}} \leq {2M \over r} .\end{align*}
solution:
Set \begin{align*} g(z) \coloneqq{f(Rz+a) - f(a) \over 2M} ,\end{align*} so that g(0) = 0 and g:{\mathbb{D}}\to {\mathbb{D}} so Schwarz applies, \begin{align*} {\left\lvert {g(z)} \right\rvert} \leq {\left\lvert {z} \right\rvert} \implies {\left\lvert { f(Rz+a) - f(a) \over 2M } \right\rvert} &\leq {\left\lvert {z} \right\rvert} \\ \implies {\left\lvert { f(Rz+a) - f(a) } \right\rvert} &\leq 2M {\left\lvert {z} \right\rvert} \\ \implies {\left\lvert { f(w) - f(a) } \right\rvert} &\leq 2M{\left\lvert { w-a\over R} \right\rvert} \\ \implies {\left\lvert {f(w) - f(a) \over w-a} \right\rvert} &\leq {2M \over R} .\end{align*}
Bounding derivatives #complex/exercise/completed
Suppose f: {\mathbb{D}}\to {\mathbb{H}} is analytic and satisfies f(0) = 2. Find a sharp upper bound for {\left\lvert {f'(0)} \right\rvert}, and prove it is sharp by example.
Some useful facts about the Cayley map:
- C(z) \coloneqq{z-i\over z+i} maps {\mathbb{H}}\to {\mathbb{D}} sending i\to 0.
- C^{-1}(z) \coloneqq-i {z+1\over z-1} maps {\mathbb{D}}\to{\mathbb{H}} sending 0\to i.
- C'(z) = {2i\over (z+i)^2} and C'(i) = -{1\over 2}i.
- (C^{-1})'(z) = {2i\over (z-1)^2} and C'(0) = 2i.
- A mistake that’s useful to know: \psi_w'(z) = {1-{\left\lvert {w} \right\rvert}^2 \over (1-\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5muz )^2} and \psi_w'(w) \to \infty.
solution:
Define g:{\mathbb{H}}\to {\mathbb{H}} by g(z) = {1\over 2}iz, so g(2) = i. Then set F \coloneqq C\circ g \circ f: {\mathbb{D}}\to {\mathbb{D}} where C(z) \coloneqq{z-i\over z+i} is the Cayley map.Since F(0) = C(g(f(0))) = C(g(2)) = C(i) = 0, Schwarz applies to F and {\left\lvert {F'(z)} \right\rvert}\leq 1 for z\in {\mathbb{D}}. By the chain rule, \begin{align*} F'(z) = f'( (g\circ C) (z))\cdot g'(C(z)) \cdot C'(z) .\end{align*} Setting g(C(z)) = 0 yields z=C^{-1}(g^{-1}(0)) = C^{-1}(0) = i. \begin{align*} F'(i) &= f'(0) \cdot g'(0) \cdot C'(i) \\ \implies {\left\lvert {f'(0)} \right\rvert} &\leq {\left\lvert {F'(i) \over g'(0) C'(i)} \right\rvert} \\ &\leq {1\over {\left\lvert {g'(0)} \right\rvert} \cdot {\left\lvert {C'(i)} \right\rvert} } \\ &= {1\over {\left\lvert {i\over 2} \right\rvert} \cdot {\left\lvert {-{i\over 2} } \right\rvert} } \\ &= 4 .\end{align*}
By Schwarz, if {\left\lvert {F'(z)} \right\rvert} = 1 for any z\in {\mathbb{D}}, we’ll have F(z) = \lambda z for some {\left\lvert { \lambda} \right\rvert} = 1. Unwinding this: \begin{align*} F(z) &= \lambda z \implies (C\circ g\circ f)(z) = \lambda z \\ \implies f(z) &= g^{-1}(C^{-1}(\lambda z)) = g^{-1}\qty{-i {\lambda z + 1 \over \lambda z - 1}} \\ \implies f(z) &= -2 {\lambda z + 1\over \lambda z - 1} .\end{align*} Moreover f'(z) = -2\qty{-2\lambda \over (\lambda z - 1)^2}, so \begin{align*} {\left\lvert {f'(0)} \right\rvert} = 4{\left\lvert {\lambda} \right\rvert} = 4 .\end{align*}
Schwarz for higher order zeros #complex/exercise/completed
Suppose f:{\mathbb{D}}\to{\mathbb{D}} is analytic, has a single zero of order k at z=0, and satisfies \lim_{{\left\lvert {z} \right\rvert} \to 1} {\left\lvert {f(z)} \right\rvert} = 1. Give with proof a formula for f(z).
solution:
Note {\left\lvert {f(z)} \right\rvert}\leq 1, and g\coloneqq f(z)/z^k has a removable singularity at zero since g is bounded on {\mathbb{D}}: fixing {\left\lvert {z} \right\rvert} = r < 1, \begin{align*} {\left\lvert {g(z)} \right\rvert} = {\left\lvert {f(z)\over z^k} \right\rvert} = {\left\lvert {f(z)} \right\rvert}r^{-k}\leq r^{-k}\overset{r\to 1}\longrightarrow 1 .\end{align*} So g:{\mathbb{D}}\to {\mathbb{D}} since {\left\lvert {g(z)} \right\rvert}\leq 1 on {\mathbb{D}} by the MMP. Since g has no zeros on {\mathbb{D}}, by the MMP {\left\lvert {g} \right\rvert} \geq 1 on {\mathbb{D}}, so {\left\lvert {g} \right\rvert} = 1 is constant, making g(z) = \lambda z a rotation. Then f(z) = \lambda z^n.
Alternative to MMP: if g has no zeros in {\mathbb{D}}, g admits a conjugate reflection through {\mathbb{D}} by z\mapsto 1/\mkern 1.5mu\overline{\mkern-1.5muf(1/\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu)\mkern-1.5mu}\mkern 1.5mu. This is bounded and entire, thus constant, making g constant.
Schwarz with an injective function #complex/exercise/completed
Suppose f, g: {\mathbb{D}}\to \Omega are holomorphic with f injective and f(0) = g(0).
Show that \begin{align*} \mathop{\mathrm{\forall}}0 < r < 1,\qquad g\qty{\left\{{{\left\lvert {z} \right\rvert} < r}\right\}} \subseteq f\qty{\left\{{{\left\lvert {z} \right\rvert} < r}\right\}} .\end{align*}
The first part of this problem asks for a statement of the Schwarz lemma.
solution:
Since f is injective, it has a left-inverse f^{-1}, and F\coloneqq f^{-1}g is well-defined. Since F:{\mathbb{D}}\to {\mathbb{D}} and F(0) = 0, Schwarz applies and {\left\lvert {F(z)} \right\rvert} \leq z on {\mathbb{D}}. Unwinding: \begin{align*} {\left\lvert {(f^{-1}\circ g)(z)} \right\rvert} \leq {\left\lvert {z} \right\rvert} \implies {\left\lvert {g(z)} \right\rvert} \leq {\left\lvert {f(z)} \right\rvert} \qquad \forall {\mathbb{D}}\in {\mathbb{Z}} .\end{align*} This says that g({\mathbb{D}}) \subseteq f({\mathbb{D}}), and in particular this holds on all {\mathbb{D}}_r(0), so g({\mathbb{D}}_r(0)) \subseteq f({\mathbb{D}}_r(0)).
Reflection principle #complex/exercise/completed
Let S\coloneqq\left\{{z\in {\mathbb{D}}{~\mathrel{\Big\vert}~}\Im(z) \geq 0}\right\}. Suppose f:S\to {\mathbb{C}} is continuous on S, real on S\cap{\mathbb{R}}, and holomorphic on S^\circ.
Prove that f is the restriction of a holomorphic function on {\mathbb{D}}.
solution:
Define a function \begin{align*} F(z) \coloneqq \begin{cases} f(z) & \Im(z)\geq 0 \\ \mkern 1.5mu\overline{\mkern-1.5muf(\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu)\mkern-1.5mu}\mkern 1.5mu & \Im(z) < 0 \end{cases} .\end{align*} Then F is holomorphic on \tilde S\coloneqq\left\{{z\in {\mathbb{D}}{~\mathrel{\Big\vert}~}\Im(z) < 0}\right\} – write w_0\in \tilde S as w_0 = \mkern 1.5mu\overline{\mkern-1.5muz_0\mkern-1.5mu}\mkern 1.5mu for some z_0\in S, then \begin{align*} f(z) &= \sum_{k\geq 0}c_k (z-z_0)^k \\ \implies \mkern 1.5mu\overline{\mkern-1.5muf(\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu)\mkern-1.5mu}\mkern 1.5mu &= \sum_{k\geq 0}\mkern 1.5mu\overline{\mkern-1.5muc_k\mkern-1.5mu}\mkern 1.5mu \mkern 1.5mu\overline{\mkern-1.5mu\qty{\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu - z_0}^k\mkern-1.5mu}\mkern 1.5mu \\ &= \sum_{k\geq 0}\mkern 1.5mu\overline{\mkern-1.5muc_k\mkern-1.5mu}\mkern 1.5mu \qty{z - \mkern 1.5mu\overline{\mkern-1.5muz_0\mkern-1.5mu}\mkern 1.5mu}^k \\ &= \sum_{k\geq 0}\mkern 1.5mu\overline{\mkern-1.5muc_k\mkern-1.5mu}\mkern 1.5mu \qty{z - w_0}^k ,\end{align*} which yields a power series expansion of F about w_0. So f is analytic at every point in \tilde S and thus holomorphic. Since \mkern 1.5mu\overline{\mkern-1.5muf(\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu)\mkern-1.5mu}\mkern 1.5mu = f(z) for z, f(z)\in {\mathbb{R}}, F is a continuous extension of f to {\mathbb{D}}. By the symmetry principle, F is holomorphic, and { \left.{{F}} \right|_{{S}} } = f.
Blaschke Factors
Spring 2019.5, Spring 2021.5 (Blaschke contraction) #complex/qual/completed
Let f be a holomorphic map of the open unit disc {\mathbb{D}} to itself. Show that for any z, w\in {\mathbb{D}}, \begin{align*} \left|\frac{f(w)-f(z)}{1-\overline{f(w)} f(z)}\right| \leq\left|\frac{w-z}{1-\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu z}\right| .\end{align*} Show that this inequality is strict for z\neq w except when f is a linear fractional transformation from {\mathbb{D}} to itself.
The Schwarz conjugation trick:
Write the RHS as a, we then want something in the form {\left\lvert {F(a)} \right\rvert}\leq {\left\lvert {a} \right\rvert}. The choice a=\psi_w(z) is forced, so z= \psi_w^{-1}(a). This forces the choice for the LHS \begin{align*} { f(w) - (f\circ \psi_w^{-1})(a) \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(w)\mkern-1.5mu}\mkern 1.5mu (f\circ \psi_w^{-1})(a) } = (\psi_{f(w)} \circ f \circ \psi_w^{-1})(a) \coloneqq F(a) .\end{align*}
solution:
This is the Schwarz–Pick lemma.
-
Fix z_1 and let w_1 = f(z_1). Define \begin{align*} \psi_{a}(z) \coloneqq{a-z \over 1-\mkern 1.5mu\overline{\mkern-1.5mua\mkern-1.5mu}\mkern 1.5muz} \in \mathop{\mathrm{Aut}}({\mathbb{D}}) .\end{align*}
- Note that inequality now reads \begin{align*} {\left\lvert {\psi_{f(w)}(f(z)) } \right\rvert} \leq {\left\lvert {\psi_w(z)} \right\rvert} .\end{align*} Moreover \psi_a is an involution that swaps a and 0.
-
Now set up a situation where Schwarz’s lemma will apply: \begin{align*} 0 \xrightarrow{\psi_{z_1}} z_1 \xrightarrow{f} f(z) \xrightarrow{\psi_{f(z_1)}} 0 ,\end{align*} so F\coloneqq\psi_{f(z_1)} \circ f \circ \psi_{z_1} \in \mathop{\mathrm{Aut}}({\mathbb{D}}) and F(0) = 0.
-
Apply Schwarz we get {\left\lvert {F(z)} \right\rvert} \leq {\left\lvert {z} \right\rvert} for all z, so \begin{align*} {\left\lvert {F(z)} \right\rvert} &\leq {\left\lvert {z} \right\rvert} \\ \implies {\left\lvert { f(z_1) - (f\circ \psi_{z_1})(z) \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(z_1)\mkern-1.5mu}\mkern 1.5mu \cdot (f\circ \psi_{z_1}) (z) } \right\rvert} &\leq {\left\lvert { z} \right\rvert} \\ \implies {\left\lvert {f(z_1) - f(w) \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(z_1)\mkern-1.5mu}\mkern 1.5mu\cdot f(w) } \right\rvert} &\leq {\left\lvert {\psi_{z_1}(z)} \right\rvert} && w\coloneqq\psi_{z_1}(z) \\ \implies {\left\lvert {f(z_1) - f(w) \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(z_1)\mkern-1.5mu}\mkern 1.5mu\cdot f(w) } \right\rvert} &\leq {\left\lvert {z_1 - z \over 1 - \mkern 1.5mu\overline{\mkern-1.5muz_1\mkern-1.5mu}\mkern 1.5mu z } \right\rvert} .\end{align*}
-
Since z_1 was arbitrary and fixed and w was a free variable, this holds for all z,w\in {\mathbb{D}}.
-
Strictness: suppose equality holds, we’ll show that f(z) = {az+b\over cz+d}
-
By Schwarz, F(z) = \lambda z for \lambda \in S^1. Thus \begin{align*} (\psi_{f(z_1)} \circ f \circ \psi_{z_1}) (z) &= \lambda z \\ \implies (f \circ \psi_{z_1}) (z) &= \psi_{f(z_1)}^{-1}(\lambda z ) \\ \implies f(w) &= \psi_{f(z_1)}^{-1}(\lambda \psi_{z_1}^{-1}(w) ) && w\coloneqq\psi_{z_1}(z) \\ &= \psi_{f(z_1)} \qty{\lambda \psi_{z_1}(w)} \\ &= \lambda \psi_{\mkern 1.5mu\overline{\mkern-1.5mu\lambda \mkern-1.5mu}\mkern 1.5muf(z_1)} \qty{\psi_{z_1}(w)} \\ &\coloneqq\lambda \psi_a(\psi_b(w)) \\ &=\lambda\qty{ a- \psi_b(w) \over 1 - \mkern 1.5mu\overline{\mkern-1.5mua\mkern-1.5mu}\mkern 1.5mu \psi_b(w) } \\ &= \quad \vdots \\ &= -\lambda \qty{ \frac{{\left(a \overline{b} - 1\right)} z - a + b}{{\left(\overline{a} - \overline{b}\right)}z - b \overline{a} + 1} } \\ &= \qty{ \frac{-\lambda {\left(a \overline{b} - 1\right)} z + \lambda( a - b)}{{\left(\overline{a} - \overline{b}\right)}z + (- b \overline{a} + 1)} } ,\end{align*} which is evidently a linear fractional transformation.
Schwarz-Pick derivative #complex/exercise/completed
Suppose f:{\mathbb{D}}\to {\mathbb{D}} is analytic. Prove that \begin{align*} \forall a\in {\mathbb{D}}, \qquad {{\left\lvert {f'(a)} \right\rvert} \over 1 - {\left\lvert {f(a)} \right\rvert}^2 } \leq {1 \over 1 - {\left\lvert {a} \right\rvert}^2} .\end{align*}
solution:
Holomorphic maps on {\mathbb{D}} contract Blaschke factors: \begin{align*} {\left\lvert { \psi_w(z) } \right\rvert} \geq {\left\lvert {\psi_{f(w)}(f(z)) } \right\rvert} ,\end{align*} i.e. \begin{align*} {\left\lvert {f(w) - f(z) \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(w)\mkern-1.5mu}\mkern 1.5muf(z)} \right\rvert} \leq {\left\lvert {w-z \over 1-\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu z} \right\rvert} .\end{align*}
proof (?):
Make a change of variables a\coloneqq\psi_w(z) so z=\psi_w^{-1}(a) = \psi_w(a), then the desired inequality follows if we can show \begin{align*} {\left\lvert { \psi_{f(w)}(f(\psi_w(a))) } \right\rvert} \leq {\left\lvert {a} \right\rvert} .\end{align*}
So define F \coloneqq\psi_{f(w)} \circ f \circ \psi_w, then since \psi_w(0) = w, \begin{align*} F(0) = \psi_{f(w)}(f(w)) = 0 .\end{align*} Moreover {\left\lvert {F(z)} \right\rvert}\leq 1 since each constituent is a map {\mathbb{D}}\to {\mathbb{D}}. So F satisfies Schwarz and the claim follows.
Given this, there’s just a clever rearrangement to obtain the stated result: \begin{align*} {\left\lvert {f(w) - f(z) \over 1 - \mkern 1.5mu\overline{\mkern-1.5muf(w)\mkern-1.5mu}\mkern 1.5muf(z)} \right\rvert} &\leq {\left\lvert {w-z \over 1-\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu z} \right\rvert} \\ \implies {\left\lvert { 1\over 1-\mkern 1.5mu\overline{\mkern-1.5muf(w)\mkern-1.5mu}\mkern 1.5muf(z) } \right\rvert} \cdot {\left\lvert {f(z) - f(w) \over z-w} \right\rvert} &\leq {\left\lvert {1\over 1-\mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5muz} \right\rvert} \\ ,\end{align*} and taking z\to w on both sides yields \begin{align*} {\left\lvert {1\over 1 - {\left\lvert {f(w)} \right\rvert}^2 } \right\rvert} {\left\lvert {f'(w)} \right\rvert} \leq {1\over {\left\lvert {w} \right\rvert}^2} \implies {\left\lvert {f'(w)} \right\rvert} \leq {1-{\left\lvert {f(w)} \right\rvert}^2\over 1-{\left\lvert {w} \right\rvert}^2 } .\end{align*}
Schwarz and Blaschke products #complex/exercise/completed
Suppose f:{\mathbb{D}}\to{\mathbb{D}} is analytic and admits a continuous extension \tilde f: \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu\to \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu such that {\left\lvert {z} \right\rvert} = 1 \implies {\left\lvert {f(z)} \right\rvert} = 1.
-
Prove that f is a rational function.
-
Suppose that z=0 is the unique zero of f. Show that \begin{align*} \exists n\in {\mathbb{N}}, \lambda \in S^1 {\quad \operatorname{ such that } \quad}f(z) = \lambda z^n .\end{align*}
- Suppose that a_1, \cdots, a_n \in {\mathbb{D}} are the zeros of f and prove that \begin{align*} \exists \lambda \in S^1 {\quad \operatorname{such that} \quad} f(z) = \lambda \prod_{j=1}^n {z - a_j \over 1 - \mkern 1.5mu\overline{\mkern-1.5mua_j\mkern-1.5mu}\mkern 1.5mu z} .\end{align*}
solution:
Part 1: use the reflection principle to define \begin{align*} F(z) \coloneqq \begin{cases} f(z) & {\left\lvert {z} \right\rvert} \leq 1 \\ {1\over \mkern 1.5mu\overline{\mkern-1.5muf\qty{1/\mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu}\mkern-1.5mu}\mkern 1.5mu } & {\left\lvert {z} \right\rvert} \geq 1 \end{cases} .\end{align*}
Now F:{\mathbb{CP}}^1\to {\mathbb{CP}}^1 is holomorphic and all such functions are rational. As a consequence, f is rational.
Part 2: As in the proof of Schwarz, define g(z) \coloneqq{f(z)\over z^n} where n = {\operatorname{Ord}}_{f}(0). Then g is holomorphic on {\mathbb{D}} since the singularity at z=0 is removable. On {\left\lvert {z} \right\rvert} = r<1, \begin{align*} {\left\lvert {g(z)} \right\rvert} = { {\left\lvert {f(z)} \right\rvert} \over {\left\lvert {z} \right\rvert} } = {{\left\lvert {f(z)} \right\rvert} \over r} \leq {1\over r} \overset{r\to 1^-}\longrightarrow 1 ,\end{align*} using that {\left\lvert {f} \right\rvert} \leq 1 on {\mathbb{D}}. By the MMP, {\left\lvert {g} \right\rvert} \leq 1 on all of {\mathbb{D}}. Note that {\left\lvert {g} \right\rvert} = 1 when {\left\lvert {z} \right\rvert}=1, so {\left\lvert {1/g} \right\rvert}\leq 1 in {\mathbb{D}} by the MMP, forcing {\left\lvert {g} \right\rvert} = 1. Unwinding this, {\left\lvert {f} \right\rvert} = {\left\lvert {z} \right\rvert}^n, go f(z) = \lambda z^n for some {\left\lvert {\lambda} \right\rvert} = 1.
Part 3: Define \Psi(z) \coloneqq\prod_{k\leq n} \psi_{a_k}(z) where \psi_a(z) \coloneqq{a-z\over 1-\mkern 1.5mu\overline{\mkern-1.5mua\mkern-1.5mu}\mkern 1.5mu z}. Set g(z) \coloneqq{f(z) \over \Psi(z)}, then by the same argument as above, {\left\lvert {g} \right\rvert} \leq 1 and {\left\lvert {g} \right\rvert} = 1 on {\left\lvert {z} \right\rvert} = 1. Then g has no zeros, since they’ve all been divided out, and no poles since f is holomorphic on {\mathbb{D}}, so 1/g is holomorphic on {\mathbb{D}}. Since {\left\lvert {1/g} \right\rvert} = 1 on S^1, this forces g to be constant. Equality in the Schwarz lemma implies g(z) = \lambda z is a rotation, and unwinding this yields f(z) = \lambda \Psi(z).
Tie’s Extra Questions: Fall 2009 #complex/exercise/completed
Let g be analytic for |z|\leq 1 and |g(z)| < 1 for |z| = 1.
-
Show that g has a unique fixed point in |z| < 1.
-
What happens if we replace |g(z)| < 1 with |g(z)|\leq 1 for |z|=1? Give an example if (a) is not true or give an proof if (a) is still true.
-
What happens if we simply assume that f is analytic for |z| < 1 and |f(z)| < 1 for |z| < 1? Suppose that f(z) \not\equiv z. Can f have more than one fixed point in |z| < 1?
Hint: The map \displaystyle{\psi_{\alpha}(z)=\frac{\alpha-z}{1-\mkern 1.5mu\overline{\mkern-1.5mu\alpha\mkern-1.5mu}\mkern 1.5muz}} may be useful.
solution (Part 1):
Use Rouché: if {\left\lvert {f(z)} \right\rvert} < 1 is strict when {\left\lvert {z} \right\rvert} = 1, then consider F(z) \coloneqq f(z) - z. Write the big part as M(z) = z and the small as m(z) = f(z), then on {\left\lvert {z} \right\rvert} = 1 \begin{align*} {\left\lvert {m(z)} \right\rvert} = {\left\lvert {f(z)} \right\rvert} < 1 = {\left\lvert {z} \right\rvert} = {\left\lvert {M(z)} \right\rvert} ,\end{align*} so M(z) and m(z) + M(z) = f(z) - z have the same number of zeros in {\mathbb{D}} – precisely one.
solution (Part 2):
There is still a unique fixed point. Use the Brouwer fixed point theorem: since g is holomorphic on \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu, it is in particular continuous. By the Brouwer fixed point theorem, every continuous map \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu \to \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu has a fixed point. If g is nonconstant, then the fixed point is unique by Schwarz: without loss of generality one can assume f(0) = 0 by composing with a Blaschke factor. Apply Schwarz to f, then if f(a) = a we have the equality clause and f(z) = \lambda z. Since a = f(a) = \lambda a, \lambda = 1 and f is the identity. If g is constant, then {\left\lvert {g(z)} \right\rvert} < 1 on {\left\lvert {z} \right\rvert} = 1 forces g\equiv 0.
solution (Part 3):
Note that there is a major difference between self maps to {\mathbb{D}} versus \mkern 1.5mu\overline{\mkern-1.5mu{\mathbb{D}}\mkern-1.5mu}\mkern 1.5mu. By the argument in part 2, if f(z) is not the identity then f can have at most one fixed point. Moreover, not every map f:{\mathbb{D}}\to{\mathbb{D}} need have a fixed point: consider \begin{align*} g: {\mathbb{H}}&\to {\mathbb{H}}\\ z &\mapsto z+1 .\end{align*} Now conjugate with the Cayley map C:{\mathbb{H}}\to {\mathbb{D}} to define f\coloneqq CgC^{-1}:{\mathbb{D}}\to {\mathbb{D}} which has no fixed points at all.
Tie’s Extra Questions: Fall 2015 (Blaschke factor properties) #complex/exercises/completed
-
Let z, w be complex numbers, such that \mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu w \neq 1. Prove that \begin{align*}{\left\lvert {\frac{w - z}{1 - \mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu z}} \right\rvert} < 1 \; \; \; \mbox{if} \; |z| < 1 \; \mbox{and}\; |w| < 1,\end{align*} and also that \begin{align*}{\left\lvert {\frac{w - z}{1 - \mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu z}} \right\rvert} = 1 \; \; \; \mbox{if} \; |z| = 1 \; \mbox{or}\; |w| = 1.\end{align*}
-
Prove that for fixed w in the unit disk \mathbb D, the mapping \begin{align*}F: z \mapsto \frac{w - z}{1 - \mkern 1.5mu\overline{\mkern-1.5muw\mkern-1.5mu}\mkern 1.5mu z}\end{align*} satisfies the following conditions:
-
F maps \mathbb D to itself and is holomorphic.
-
F interchanges 0 and w, namely, F(0) = w and F(w) = 0.
-
{\left\lvert {F(z)} \right\rvert} = 1 if |z| = 1.
-
F: {\mathbb D} \mapsto {\mathbb D} is bijective.
-
Hint: Calculate F \circ F.
Tie’s Extra Questions: Spring 2015 #complex/exercise/completed
Suppose f is analytic in an open set containing the unit disc \mathbb D and |f(z)| =1 when |z|=1. Show that either f(z) = e^{i \theta} for some \theta \in \mathbb R or there are finite number of z_k \in \mathbb D, k \leq n and \theta \in \mathbb R such that \begin{align*} \displaystyle f(z) = e^{i\theta} \prod_{k=1}^n \frac{z-z_k}{1 - \mkern 1.5mu\overline{\mkern-1.5muz\mkern-1.5mu}\mkern 1.5mu_k z } \, . .\end{align*}
Also cf. Stein et al, 1.4.7, 3.8.17
Tie’s Extra Questions: Spring 2015 (Equality of modulus) #complex/exercise/completed
Let f and g be non-zero analytic functions on a region \Omega. Assume |f(z)| = |g(z)| for all z in \Omega. Show that f(z) = e^{i \theta} g(z) in \Omega for some 0 \leq \theta < 2 \pi.
solution:
Define F(z) \coloneqq{f(z) \over g(z)}.
F is holomorphic on \Omega.
proof (of claim):
Note that g(a) = 0 iff f(a) = 0, so F has no poles. If F has a singularity at z_0, noting that {\left\lvert {F(z_0)} \right\rvert} = 1, F is bounded in a neighborhood of z_0 and thus the singularity must be removable. By Riemann’s removable singularity theorem, F extends to a holomorphic function.
Given this, note that {\left\lvert {F(z)} \right\rvert} = 1 for all z, so F(\Omega) \subseteq S^1, which is codimension 1 in {\mathbb{C}} and not open. By the open mapping theorem, F must be constant, so F(z) = \lambda, and in particular since {\left\lvert {F(z)} \right\rvert} = 1, \lambda = e^{it}\in S^1 for some t. Then f(z) = \lambda g(z).
Fixed Points
Fall 2020.7 #complex/qual/completed
Suppose that f: \mathbb{D} \rightarrow \mathbb{D} is holomorphic and f(0)=0. Let n \geq 1, and define the function f_{n}(z) to be the n-th composition of f with itself; more precisely, let
\begin{align*} f_{1}(z):=f(z), f_{2}(z):=f(f(z)), \text { in general } f_{n}(z):=f\left(f_{n-1}(z)\right) . \end{align*}
Suppose that for each z \in \mathbb{D}, \lim _{n \rightarrow \infty} f_{n}(z) exists and equals to g(z). Prove that either g(z) \equiv 0 or g(z)=z for all z \in D.
solution:
Note that there is a unique fixed point. We have f(0) = 0, so there is at least one, so suppose a is another fixed point with f(a) = a. By Schwarz, {\left\lvert {f(z)} \right\rvert}\leq {\left\lvert {z} \right\rvert} with equality at any nonzero point implying f is a rotation, and f(a) = a\implies {\left\lvert {f(a)} \right\rvert} = {\left\lvert {a} \right\rvert}, so write f(z) = e^{i\theta}z. Now f(a) = a = e^{i\theta }a forces \theta = 0, so f(z) = z is the identity.
Since f(0) = 0, the Schwarz lemma applies and either
- f(z) = e^{i\theta} z is a rotation, or
- {\left\lvert {f'(0)} \right\rvert} < 1 and {\left\lvert {f(z)} \right\rvert} < z for all z\in {\mathbb{D}}.
Supposing the latter, f is a contraction, and {\left\lvert {f_{n+1}(z)} \right\rvert} < {\left\lvert {f_{n}(z)} \right\rvert} for all n and all z, so {\left\lvert {f_n(z)} \right\rvert} \overset{n\to\infty}\longrightarrow 0 for all z. Since f_n\to g pointwise, this means g(z) = 0 for all z, making g\equiv 0.
Otherwise, suppose f is a rotation. Then if f(z) = e^{i\theta}z, f_n(z) = e^{in\theta}z. The pointwise limit \lim_{n\to\infty}e^{in\theta}z can only exist if \theta = 0, otherwise this is periodic when \theta is rational or the points e^{i\theta}z, e^{2i\theta }z,\cdots form form a countably infinite set of distinct points. So f(z) = z, making \lim_{n\to \infty}f_n(z) = z as well.