Tie’s Extra Questions: Fall 2015 (Computing area) #complex/exercise/completed
Let f(z)=∑∞n=0cnzn be analytic and one-to-one in |z|<1. For 0<r<1, let Dr be the disk |z|<r. Show that the area of f(Dr) is finite and is given by S=π∞∑n=1n|cn|2r2n.
Note that in general the area of f(D1) is infinite.
solution:
Since f is injective, f′ is nonvanishing in Ω:=|z|≤r. A computation: μ(f(Dr))=∫Dr|f′(z)|dz=∫Drf′(z)¯f′(z)dz=∫Dr(∑j≥1jcjzj−1)¯(∑k≥1kckzk−1)dz=∫Dr(∑j≥1jcjzj−1)(∑k≥1k¯ck¯zk−1)dz=∫Dr∑j,k≥1jkcj¯ckzj−1¯zk−1dz=∫R0∫2π0∑j,k≥1jkcj¯ck(reit)j−1(re−it)k−1rdrdt=∫R0∫2π0∑j,k≥1jkcj¯ckrj+k−1ei(j−k)tdrdt=∫R0∑k≥1k2|ck|2r2k−1⋅2πdt=∑k≥1k2|ck|2r2k2k|Rr=0=π∑k≥1k|ck|2R2k.
Tie’s Extra Questions: Fall 2015 (Variant) #complex/exercise/completed
Let f(z)=∑∞n=−∞cnzn be analytic and one-to-one in r0<|z|<R0. For r0<r<R<R0, let D(r,R) be the annulus r<|z|<R. Show that the area of f(D(r,R)) is finite and is given by S=π∞∑n=−∞n|cn|2(R2n−r2n).
solution:
See above solution: all goes identically up until the integral over r values, just replace ∫R0 with ∫Rr.
Spring 2019.1 #complex/qual/work
Define
E(z)=ex(cosy+isiny).
- Show that E(z) is the unique function analytic on C that satisfies
E′(z)=E(z),E(0)=1.
- Conclude from the first part that E(z)=∞∑n=0znn!.
Recurrences #complex/qual/work
Let x0=a,x1=b, and set xn:=xn−1+xn−22n≥2.
Show that {xn} is a Cauchy sequence and find its limit in terms of a and b.
solution:
With some substitution, one can compute |xn−xn−1|=|12xn−1+12xn−2−xn−1|=12|xn−1−xn−2|, which holds for all n. This is enough to show that the sequence is contractive, i.e. |xn−xn−1|=c|xn−1−xn−2|c∈(0,1).
Apply this recursively yields |xn−xn−1|=(12)n−1|b−a|n→∞⟶0, since |b−a| is a constant. So in fact xn is convergent and thus Cauchy convergent.
Note: to compare |xi−xj| directly, assume i>j and apply the above estimate i−j+1 on |xi−xi−1|,|xi−1−xi−2|,⋯ to reduce to this case. This yields something like |xi−xj|=(12)i−j+1|xj−xj−1|=(12)i−j+1(12)j−1|b−a|→0. One could equivalently use the triangle inequality and a partial geometric sum to write |xi−xj|≤∑j≤k≤i−1|xk+1−xk|⟹|xi−xj|≤cj(11−c)|b−a|.
Computing its limit: the usual trick of setting L:=lim only yields L = {L + L \over 2} here, and thus no information. Instead assume x_n = r^n is geometric, then \begin{align*} 2x_n - x_{n-1} - x_{n-2} = 0 \implies 2r^n - r^{n-1} - r^{n-2} = 0 \implies 2r^2 - r - 1 = 0 \iff (2r+1)(r-1) = 0 \implies r = -1/2, 1 .\end{align*} Write a general solution as \begin{align*} x_n = c_1 (-1/2)^n + c_2 (1)^n = c_1 (-1/2)^n + c_2 ,\end{align*} and solve for initial conditions: \begin{align*} x_0: \quad a &= c_1 + c_2 \\ x_1: \quad b &= (-1/2)c_1 + c_2 \\ \\ \implies { \begin{bmatrix} {1} & {1} \\ {-1/2} & {1} \end{bmatrix} } \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} &= \begin{bmatrix} a \\ b \end{bmatrix} \\ \implies \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} &= {1\over 1 + (1/2)} { \begin{bmatrix} {1} & {-1} \\ {1/2} & {1} \end{bmatrix} } \begin{bmatrix} a \\ b \end{bmatrix} \\ &= \qty{1\over 3} { \begin{bmatrix} {2} & {-2} \\ {1} & {2} \end{bmatrix} } \begin{bmatrix} a \\ b \end{bmatrix} \\ &= \qty{1\over 3} \begin{bmatrix} 2a-2b \\ a+b \end{bmatrix} .\end{align*}
So the general solution is \begin{align*} x_n = {2\over 3}(a-b) \qty{-1\over 2}^n + {1\over 3}(a+b)\overset{n\to \infty}\longrightarrow \qty{1\over 3}(a+b) .\end{align*}
Uniform continuity #complex/qual/work
Suppose f:{\mathbf{R}}\to{\mathbf{R}} is continuous and \lim_{x\to \pm \infty} f(x) = 0. Prove that f is uniformly continuous.
solution:
Fix {\varepsilon}>0, we need to find a \delta = \delta({\varepsilon}) such that \begin{align*} {\left\lvert {x-y} \right\rvert}<\delta \implies {\left\lvert {f(x) - f(y)} \right\rvert} < {\varepsilon}&& \forall x, y\in {\mathbf{R}} .\end{align*} Use that \lim_x\to \pm \infty f(x) = 0 to choose M\gg 0 such that \begin{align*} {\left\lvert {x} \right\rvert} \geq M \implies {\left\lvert {f(x)} \right\rvert} \leq {\varepsilon}/2 ,\end{align*} then \begin{align*} {\left\lvert {x} \right\rvert}, {\left\lvert {y} \right\rvert} \geq M \implies {\left\lvert {f(x) - f(y)} \right\rvert} \leq {\left\lvert {f(x)} \right\rvert} + {\left\lvert {f(y)} \right\rvert} \leq {\varepsilon} .\end{align*} So in this region choose (say) \delta_1 < {\varepsilon} to ensure that B_\delta(x), B_\delta(y) \subseteq [-M, M]^c. On [-M, M], note that this region is compact and f continuous on a compact set implies uniformly continuous. So use this to choose \delta_2 = \delta_2({\varepsilon}) in this region to ensure {\left\lvert {f(x) - f(y)} \right\rvert} < {\varepsilon}.
This handles the cases x, y \in (M, M)^c, or x,y\in [M, M], so it only remains to handle x\in [M, M] and y\in (M, M)^c (wlog, relabeling x,y if necessary). In this case, use the triangle inequality: \begin{align*} {\left\lvert {f(x) - f(y)} \right\rvert} &= {\left\lvert {f(x) - f(M) + f(M) -f(y)} \right\rvert} \\ &\leq {\left\lvert {f(x) - f(M)} \right\rvert} + {\left\lvert {f(M) -f(y)} \right\rvert} \\ &\leq {\varepsilon}+ {\left\lvert {f(M)} \right\rvert} + {\left\lvert {f(y)} \right\rvert} \\ &\leq {\varepsilon}+ {\varepsilon}+ {\varepsilon} ,\end{align*} where we’ve used that M, y\in (M, M)^c to apply the first bound and M, x\in [M, M] to apply the second.
Negating uniform continuity #complex/qual/completed
Tie, Fall 2009
Show that f(z) = z^2 is uniformly continuous in any open disk |z| < R, where R>0 is fixed, but it is not uniformly continuous on \mathbb C.
solution:
A direct computation: fix {\varepsilon}>0 and suppose {\left\lvert {z-w} \right\rvert} < R. Then \begin{align*} {\left\lvert {z^2-w^2} \right\rvert} &= {\left\lvert {z-w} \right\rvert}{\left\lvert {z+w} \right\rvert} \\ &\leq \delta \qty{{\left\lvert {z} \right\rvert} + {\left\lvert {w} \right\rvert}} \\ &\leq \delta \cdot 2R ,\end{align*} so choose \delta < { {\varepsilon}\over 2R} to get uniform continuity on {\mathbb{D}}_{R/2}(0).
To see f can’t be uniformly continuous on {\mathbf{C}}, take {\varepsilon}\coloneqq c any constant and suppose the appropriate \delta exists. We’ll look for a bad pair of z, w, so take w = z + {1\over 2}\delta. This would imply \begin{align*} {\left\lvert {z^2 - w^2} \right\rvert} &= {\left\lvert {z^2 - (z+\delta)^2} \right\rvert} \\ &= {\left\lvert {-2z\delta - \delta^2} \right\rvert} \\ &= {\left\lvert {2z\delta + \delta^2} \right\rvert} \\ &= \delta {\left\lvert {2z + \delta} \right\rvert} \\ &\overset{{\left\lvert {z} \right\rvert}\to\infty}\longrightarrow\infty ,\end{align*} using the \delta = \delta({\varepsilon}) can’t depend on z or w, and is thus constant in this expression. This contradicts that {\left\lvert {z^2-w^2} \right\rvert} < {\varepsilon}= c < \infty.
Non-continuously differentiable #complex/qual/completed
Give an example of a function f:{\mathbf{R}}\to {\mathbf{R}} that is everywhere differentiable but f' is not continuous at 0.
solution:
The standard example: \begin{align*} f(x) \coloneqq \begin{cases} x^2\sin\qty{1\over x} & x\neq 0 \\ 0 & x=0. \end{cases} .\end{align*}
Away from zero, this is clearly differentiable since we can just compute the derivative by the chain rule. It turns out that \begin{align*} f'(x) = \begin{cases} 2x\sin\qty{1\over x} + x^2 \cos\qty{1\over x}\qty{-1\over x^2} = 2x\sin\qty{1\over x} - \cos\qty{1\over x} & x\neq 0 \\ 0 & x=0. \end{cases} .\end{align*} Here we check differentiability and compute the derivative at x=0 directly: \begin{align*} {f(x) - f(0) \over x-0} = {x^2\sin\qty{1\over x} - 0 \over x-0} = x\sin\qty{1\over x} \overset{x\to 0}\longrightarrow 0 ,\end{align*} using that -x \leq {\left\lvert {x\sin \qty{1\over x}} \right\rvert}\leq x.
But now notice that the \cos\qty{1\over x} term in f' isn’t enveloped by an x^c term, so \lim_{x\to 0} f'(x) does not exist for oscillatory reasons:
In particular, \lim_{x\to 0}f'(x) \neq f'(0) = 0.
Uniformly convergent + uniformly continuous #complex/qual/completed
Suppose \left\{{g_n}\right\} is a uniformly convergent sequence of functions from {\mathbf{R}} to {\mathbf{R}} and f:{\mathbf{R}}\to {\mathbf{R}} is uniformly continuous. Prove that the sequence \left\{{f\circ g_n}\right\} is uniformly convergent.
solution:
Uniformly convergent means that {\left\lVert {g_i - g_j} \right\rVert}_{\infty} \to 0, so \sup_{x\in X}{\left\lvert {g_i(x)-g_j(x)} \right\rvert} \overset{i, j\to\infty}\longrightarrow 0. We want to show that given {\varepsilon} we can find N_0 such that i, j > N_0 yields \begin{align*} \sup_{x\in X}{\left\lvert { f\circ g_i(x) - f\circ g_j(x) } \right\rvert} < {\varepsilon} .\end{align*}
Fix {\varepsilon}> 0, then choose \delta_1 = \delta_1({\varepsilon}) by uniform continuity of f to guarantee \begin{align*} {\left\lvert {y_1 - y_2} \right\rvert} \leq \delta_1 \implies {\left\lvert {f(y_1) - f(y_2) } \right\rvert} < {\varepsilon}\, \forall y_1, y_2\in X .\end{align*} Now by uniform convergence of \left\{{g_n}\right\}, choose N_0 = N_0(\delta_1) such that \begin{align*} i, j \geq N_0 \implies {\left\lvert { g_i(x) - g_j(x) } \right\rvert} < \delta_1 \, \forall x\in X .\end{align*}
Now writing y_1 \coloneqq g_i(x), y_2 \coloneqq g_j(x), choose i, j > N_0 yields \begin{align*} {\left\lvert {y_1 - y_2} \right\rvert} \coloneqq{\left\lvert {g_i(x) - g_j(x) } \right\rvert} < \delta_1 \\ \implies {\left\lvert {f(y_1) - f(y_2)} \right\rvert} \coloneqq{\left\lvert {f(g_i(x)) - f(g_j(x))} \right\rvert} < {\varepsilon} ,\end{align*} and taking the supremum over x\in X preserves the inequality since \delta_1 and consequently N_0 only depend on {\varepsilon}.
Uniform differentiability #complex/qual/completed
Let f be differentiable on [a, b]. Say that f is uniformly differentiable iff
\begin{align*} \forall \varepsilon > 0,\, \exists \delta > 0 \text{ such that } \quad {\left\lvert {x-y} \right\rvert} < \delta \implies {\left\lvert { {f(x) - f(y) \over x-y} - f'(y)} \right\rvert} < {\varepsilon} .\end{align*}
Prove that f is uniformly differentiable on [a, b] \iff f' is continuous on [a, b].
solution:
\implies: Fix {\varepsilon}>0 and choose \delta = \delta({\varepsilon}) to get a bound corresponding to {\varepsilon}/2, then for all x,y with {\left\lvert {x-y} \right\rvert} < \delta on [a, b], we have \begin{align*} {\left\lvert {f'(x) - f'(y) } \right\rvert} \leq {\left\lvert {f'(x) - {f(x) - f(y) \over x- y} } \right\rvert} + {\left\lvert { {f(x) - f(y) \over x-y} - f'(y)} \right\rvert} < {\varepsilon} .\end{align*} This uses uniformity to bound by {\varepsilon}/2 the terms involving f'(x) and f'(y) respectively. So f' is in fact uniformly continuous on [a, b].
\impliedby: Let {\varepsilon}> 0 and x,y\in [a, b] be arbitrary. Then by the MVT, we can a \xi\in [x, y] with f'(\xi)(x-y) = f(x) - f(y). Then use continuity of f' to choose \delta = \delta({\varepsilon}, x, y) so that {\left\lvert {x-y} \right\rvert} < \delta \implies {\left\lvert {f(x) - f(y)} \right\rvert} < {\varepsilon}, and note that {\left\lvert {x-\xi} \right\rvert} \leq {\left\lvert {x-y} \right\rvert} < \delta, so \begin{align*} {\left\lvert { {f(x) - f(y) \over x-y } - f'(y) } \right\rvert} = {\left\lvert { f'(\xi) - f'(y)} \right\rvert} < {\varepsilon} .\end{align*}
Inf distance #complex/qual/completed
Suppose A, B \subseteq {\mathbf{R}}^n are disjoint and compact. Prove that there exist a\in A, b\in B such that \begin{align*} {\left\lVert {a - b} \right\rVert} = \inf\left\{{{\left\lVert {x-y} \right\rVert} {~\mathrel{\Big\vert}~}x\in A,\, y\in B}\right\} .\end{align*}
solution:
Define a function \begin{align*} d: A \times B &\to {\mathbf{R}}\\ (x, y) &\mapsto {\left\lVert {x- y} \right\rVert} .\end{align*} Then d is a continuous function on a compact topological space (where the product is compact by Tychonoff), and the extreme value theorem applies: d attains its min/max for some pair (a, b) in its domain.
Note that disjointness just guarantees that {\left\lVert {a-b} \right\rVert}>0, since {\left\lVert {a-b} \right\rVert} = 0 \implies a=b and A \cap B = \emptyset.
Connectedness #complex/qual/completed
Suppose A, B\subseteq {\mathbf{R}}^n are connected and not disjoint. Prove that A\cup B is also connected.
solution:
Use that X is connected iff \mathop{\mathrm{Hom}}_{{\mathsf{Top}}}(X, S^0) = \left\{{c_{-1}, c_1}\right\}, i.e. every continuous map from X\to \left\{{-1, 1}\right\} is a constant map x \xrightarrow{c_{-1}} -1 or x \xrightarrow{c_1} 1. Let f: A\cup B \to S^0 be arbitrary, and let f_1 \coloneqq{ \left.{{f}} \right|_{{A}} } and f_2 \coloneqq{ \left.{{f}} \right|_{{B}} }. By connectedness of A, f_1 is a constant map, as is f_2. On the intersection, for x\in A \cap B \neq \emptyset, we have f_1(x) = f_2(x) since x\in A and x\in B. So f_1 and f_2 are constant functions that must map to the same constant, so f is constant and this A\cup B is connected.
Pointwise and uniform convergence #complex/qual/completed
Suppose \left\{{f_n}\right\}_{n\in {\mathbb{N}}} is a sequence of continuous functions f_n: [0, 1]\to {\mathbf{R}} such that \begin{align*} f_n(x) \geq f_{n+1}(x) \geq 0 \quad \forall n\in {\mathbb{N}},\, \forall x\in [0, 1] .\end{align*} Prove that if \left\{{f_n}\right\} converges pointwise to 0 on [0, 1] then it converges to 0 uniformly on [0, 1].
solution:
Let {\varepsilon}>0, we want to show that there exists an N_0 such that n\geq N_0 implies {\left\lVert {f_n} \right\rVert}_\infty<{\varepsilon}. Fix x, by pointwise convergence pick M_x = M_x(x, {\varepsilon}) so that n\geq M \implies {\left\lvert {f_n(x)} \right\rvert} < {\varepsilon}. By continuity, this bound holds in some neighborhood U_x \ni x. Produce a cover \left\{{U_x}\right\}_{x\in [0, 1]}\rightrightarrows[0, 1]; by compactness produce a finite subcover \left\{{U_1, \cdots, U_m}\right\} \rightrightarrows[0, 1]. Each U_i corresponds to some x_i and some M_{x_i}, so choose N_0 > \max_{i\leq m} \left\{{M_{x_i}}\right\}. Then n\geq N_0 \implies N\geq M_{x_i} for each i, so {\left\lvert {f_n(x)} \right\rvert} < {\varepsilon} for each x\in [0, 1] since x\in U_i for some i. So \sup_{x\in X} {\left\lvert {f_n(x)} \right\rvert} = {\left\lVert {f_n} \right\rVert}_{\infty } < {\varepsilon}.
#complex/qual/work
Show that if E\subset [0, 1] is uncountable, then there is some t\in {\mathbf{R}} such that E\cap(-\infty ,t) and E\cap(t, \infty) are also uncountable.
solution:
See 3.2.12 of Understanding analysis 2ed. of Abbott. Show something stronger, that the following set is nonempty and open: \begin{align*} S \coloneqq\left\{{t\in {\mathbf{R}}{~\mathrel{\Big\vert}~}E \cap(-\infty, t), E \cap(t, \infty) \text{ are uncountable}}\right\} \subseteq {\mathbf{R}} .\end{align*} Write \begin{align*} S_- &\coloneqq\left\{{ t\in {\mathbf{R}}{~\mathrel{\Big\vert}~}E \cap(- \infty, t) \text{ is countable}}\right\} \\ S_+ &\coloneqq\left\{{ s\in {\mathbf{R}}{~\mathrel{\Big\vert}~}E \cap(s, \infty) \text{ is countable}}\right\} .\end{align*}
Note that S_- \neq {\mathbf{R}} since then we could write E = \bigcup_{n\in {\mathbf{Z}}} E \cap(- \infty, n) as a countable union of countable sets.
Claim: S = (\sup S_-,, \inf S_+).
???
#complex/qual/work
Suppose f, g: [0, 1] \to {\mathbf{R}} where f is Riemann integrable and for x, y\in [0, 1], \begin{align*} {\left\lvert {g(x) - g(y)} \right\rvert} \leq {\left\lvert {f(x) - f(y)} \right\rvert} .\end{align*}
Prove that g is Riemann integrable.
solution:
Write U(f), L(f) for the upper and lower sums of f, so for \Pi the collection of all partitions of [0, 1], \begin{align*} U(f) \coloneqq\inf_{P\in \Pi} U(f, P) && U(f, P) \coloneqq\sum_{k=1}^n \sup_{x\in I_k}f(x) \cdot \mu(I_k) \\ L(f) \coloneqq\sup_{P\in \Pi} L(f, P) && L(f, P) \coloneqq\sum_{k=1}^n \inf_{x\in I_k} f(x) \cdot \mu(I_k) .\end{align*}
Note that integrability of f is equivalent to \begin{align*} \forall {\varepsilon}\exists P \text{ such that } U(f, P) - L(f, P) < {\varepsilon}\\ \iff \sum_{k=1}^n \qty{ \sup_{x\in I_k} f(x) - \inf_{x\in I_k} f(x)} \mu(I_k) < {\varepsilon} .\end{align*}
Exercises
Show that f(x) = x^n is uniformly continuous on any interval [-M, M].
solution:
\begin{align*} {\left\lvert {x^n - y^n} \right\rvert} = {\left\lvert {y-x} \right\rvert}{\left\lvert {\sum_{1\leq k \leq n} x^k y^{n-k}} \right\rvert} \leq n M^{n-1}{\left\lvert {y-x} \right\rvert} \overset{y\to x}\longrightarrow 0 .\end{align*}
Show f(x) = x^{-n} for n\in {\mathbf{Z}}_{\geq 0} is uniformly continuous on [0, \infty).
solution:
\begin{align*} x^{1\over n} - y^{1\over n} \leq (x-y)^{1\over n} \overset{x\to y}\longrightarrow 0 ,\end{align*} using (a+b)^m \geq a^m + b^m
solution:
Apply the MVT: \begin{align*} {\left\lvert {f(x) - f(y)} \right\rvert} = {\left\lvert {f(\xi)} \right\rvert} {\left\lvert {x-y} \right\rvert} \overset{y\to x}\longrightarrow 0 .\end{align*}
Show that the Dirichlet function f(x) = \chi_{I \cap{\mathbf{Q}}} is not Riemann integrable and is everywhere discontinuous.
solution:
Check \sup f = 1 and \inf f = 0 on every sub-interval, so L(f, P) = 0 and U(f, P) = 1 for every partition P of [0, 1].
Discontinuity: #todo