MATH 140A: FOUNDATIONS OF REAL ANALYSIS I SUMMARY OF KEY FACTS FOR EXAM 2

TODD KEMP

Throughout, reference numbers (like Definition 2.18 and Proposition 2.21) refer to the course lecture notes, also available on the website.

\limsup , \lim inf, and the Extended Reals \mathbb{R}

- (1) Definition of lim sup and lim inf (Definition 2.18).
- (2) The limit exists iff $\limsup = \liminf$ (Proposition 2.21).
- (3) The lim sup is the largest subsequential limit; the lim inf is the smallest subsequential limit (Theorem 2.24).
- (4) The Bolzano-Weierstrass Theorem (Theorem 2.25): every bounded subsequence in \mathbb{R} contains a convergent subsequence.
- (5) The extended real numbers $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.

Complex Numbers

- (1) Construction of \mathbb{C} using matrices (Definition 3.7).
- (2) Definition and properties of the complex modulus (Definition 3.9 and Lemma 3.10).
- (3) Convergent and Cauchy sequences in \mathbb{C} (Definition 3.11 and Theorem 3.12).
- (4) Convergence and Cauchy in terms of Real and Imaginary parts (Proposition 3.13).
- (5) Cauchy completeness (Theorem 3.14) and Bolzano-Weierstrass theorem (Theorem 3.15).

Series

- (1) Definition and convergence (Definition 4.2).
- (2) Geometric series (Example 4.3).
- (3) Harmonic series (Example 4.5).
- (4) Cauchy criterion for convergence (Proposition 4.6).
- (5) If $\sum a_n$ converges then $a_n \to 0$ (Corollary 4.7).
- (6) Comparison test (Theorem 4.8).
- (7) Lacunary series (Proposition 4.10); $\sum \frac{1}{n^p}$ converges iff p > 1 (Example 4.11).
- (8) Root test (Theorem 4.12) and Ratio test (Theorem 4.15).
- (9) The number e (Example 4.19, Lemma 4.20, Proposition 4.21).
- (10) Absolute convergence (Definition 4.22); implies convergence (Lemma 4.23).
- (11) Alternating series test (Proposition 4.24).
- (12) Alternating harmonic series (Example 4.25).
- (13) Rearrangements (Theorem 4.26).

Metric Spaces

- (1) Definition of a metric (Definition 5.1).
- (2) *p*-metrics on \mathbb{R}^n and \mathbb{C}^n for $1 \le p \le \infty$ (Example 5.2(3)).

Date: February 21, 2016.

- (3) Discrete metrics (Example 5.2(6)).
- (4) Balls (Definition 5.3).
- (5) Convergent and Cauchy sequences in a metric space (Definition 5.5).
- (6) Limit points and isolated points (Definition 5.7).
- (7) Closed sets (Definition 5.9); in terms of closure under limits (Proposition 5.11).
- (8) Open sets (Definition 5.12).
- (9) Balls are open sets (Proposition 5.14).
- (10) A set is open iff its complement is closed (Proposition 5.15).
- (11) Closure, interior, and boundary (Definition 5.17).
- (12) Compact sets (Definition 5.22).

Some Useful Hints.

- (1) If Ø ≠ A ⊂ ℝ is bounded above and α ∈ ℝ, to show that α = sup A it is necessary and sufficient to show two things: that α is an upper bound for A, and given any x < α there is some element a ∈ A with a ≥ x. Similarly, if A is bounded below and β ∈ ℝ, to show β = inf A it is necessary and sufficient to show two things: that β is a lower bound for A, and given any y > β there is some element b ∈ A with b ≤ y.
- (2) If Ø ≠ A ⊂ ℝ is bounded above and α = sup A, there exists an increasing sequence a_n ∈ A such that a_n → α. Similarly, if A is bounded below and β = inf A, there exists a decreasing sequence b_n ∈ A such that b_n → β.
- (3) Statements about sup and inf, or about lim sup and lim inf, can be (carefully!) interchanged by multiplying by -1: $\sup(-E) = -\inf(E)$, and $\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$.
- (4) The Root test and Ratio test are not subtle tools. They essentially work by comparison to a geometric series, which converges or diverges *fast*. They can be useful for analyzing series whose terms have complicated expressions; but series that either converge or diverge slowly will fall under the "no information" case in these tests.
- (5) Typically, the only property of a putative metric that is difficult to verify is the triangle inequality. This is no accident: by far the most important and most commonly used property of metrics is the triangle inequality.
- (6) This is one of the rare times when it pays to do rote memorization in mathematics. You should have the definitions of *limit point*, *isolated point*, *interior*, *closure*, *boundary*, *closed*, *open* at your fingertips.