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Suppose k ⊂ K is a separable field extension of degree n.
(a): Show that K ' k[x]/(f(x)) for some f(x) ∈ k[x] of degree n.

Proof. By the primitive element theorem, K = k[α] for some α ∈
K. If f is the minimal polynomial of α over k, then K = k[α] '
k[x]/(f(x)). Then

deg f = [K : k] = n,

so we see that K ' k[x]/(f(x)) where f(x) ∈ k[x] has degree n. �

(b): Show that K ⊗k K ' K[y]/(f(y)) as K-algebras.

Proof. Since K ' k[x]/(f(x)), we see that

K ⊗k K ' k[x]/(f(x))⊗k k[y]/(f(y)) ' k[x, y]/(f(x), f(y)).

On the other hand,

K[y]/(f(y)) ' (k[x]/(f(x))) [y]/(f(y)) ' k[x, y]/(f(x), f(y)),

so we see that

K ⊗k K ' k[x, y]/(f(x), f(y)) ' K[y]/(f(y)).

�

(c): Deduce that if K is Galois over k, then f(y) splits over K, and
K ⊗k K ' Kn as K-algebras.

Proof. If K is Galois over k, then, since K ' k[y]/(f(y)), it must be
the case that f(y) splits over K (else K would not be normal over k).
Hence, f(y) =

∏n
i=1(y−αi) for αi ∈ K, i = 1, . . . , n. Since (y−αi) is

maximal in K[y] and (f(x)) = (
∏n

i=1(y−αi)) = (y−α1) · · · (y−αn),
we know, by the Chinese Remainder Theorem, that

K[y]/(f(x)) ' K[y]/(y − α1)× · · · ×K[y]/(y − αn).

Now, since K[y]/(y − αi) ' K, this implies that K[y]/(f(x)) ' Kn.
Therefore, using the result from (b) above,

K ⊗k K ' K[y]/(f(x)) ' Kn.

�
1
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Let R be an ordered field whose squares are the non-negative elements.
Suppose that the elements of R[x] satisfy the intermediate value theorem.
Let C = R[x]/(x2 + 1).

(a): Show that R has characteristic 0, and that every odd degree poly-
nomial over R has a root in R. Deduce that every non-trivial Galois
extension of R has even degree.

Proof. Suppose R has characteristic p. Then, since ≤ respects ad-
dition, 1 ≤ 1 + 1 ≤ . . . ≤ p − 1. However, p − 1 + 1 = 0, and so we
have 0 ≤ 1 ≤ 1 + 1 ≤ . . . ≤ p− 1 ≤ 0, meaning that 0 = 1, which is
impossible. Therefore, it must be the case that R has characteristic
0.

Now, suppose f is an odd degree polynomial over R. Then f(x) =
a2n+1x

2n+1 + . . . + a1x + a0. Suppose a2n+1 ≤ 0. Then, for x
sufficiently small, the leading term dominates all other terms so,
since x2n+1 ≤ 0 for x ≤ 0, f(x0) ≥ 0 for x0 sufficiently small. On
the other hand, for x ≥ 0, x2n+1 ≥ 0, so, for x1 sufficiently large,
f(x1) ≤ 0. Therefore, since the elements of R[x] (including f) satisfy
the intermediate value theorem, f(x) = 0 for some x0 ≤ x ≤ x1.
That is, f has a root in R.

Now, suppose K is a finite extension of R. Then, by the primitive
element theorem, there exists α ∈ K such that K = R[α]. In turn,
since R[α] ' R[x]/(f(x)) where f(x) ∈ R[x] is the minimal poly-
nomial of α over R, we see that K ' R[x]/(f(x)). Now, since f is
irreducible over R, it’s clear that deg f must be even, by the result
proved above. However, since [K : R] = deg f , this in turn means
that K must have even degree as an extension of R. Since our choice
of K was arbitrary, we see that every finite extension of R must be
of even degree. �

(b): Show that C is a field, that every element of C is a square of an
element of C, and that C has no field extensions of degree 2.

Proof. Since the two roots of x2+1 in R̄ are
√
−1 and −

√
−1 and the

squares in R are the non-negative elements, x2 + 1 is irreducible, so
C = R[x]/(x2 + 1) is a field. Now, for any element in R[x]/(x2 + 1),
we can reduce higher-order terms by x2 = −1, so a generic element
in C is of the form a + bx for some a, b ∈ R. If a = b = 0, then it’s
clear that a + bx = 0 + 0x = (0 + 0x)2. Otherwise, let

c =

√
a +

√
a2 + b2

2
d =

b

2

√
2

a +
√

a2 + b2
.
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Then, since
√

a2 + b2 ≥ |a|, (where |a| = a if a ≥ 0 and |a| = −a if
a ≤ 0), so c and d are both in R, and so c + dx ∈ C. Furthermore,

(c + dx)2 = c2 − d2 + 2cdx

=
a +

√
a2 + b2

2
− b2

4

(
2

a +
√

a2 + b2

)
+ 2

√a +
√

a2 + b2

2

( b

2

√
2

a +
√

a2 + b2

)
x

=
(a +

√
a2 + b2)2

2(a +
√

a2 + b2)
− b2

4

(
4

2(a +
√

a2 + b2)

)
+ 2

b

2

√
2(a +

√
a2 + b2)

2(a +
√

a2 + b2)
x

=
a2 + 2a

√
a2 + b2 + a2 + b2

2(a +
√

a2 + b2)
− b2

2(a +
√

a2 + b2)
+ bx

=
2a2 + 2a

√
a2 + b2

2(a +
√

a2 + b2)
+ bx

= a + bx.

Since our choice of a + bx ∈ C was arbitrary, we see that every
element of C is a square of an element of C.

Now, suppose K is a field extension of C of degree 2. Then, since
C contains a second root of unity (namely −1), Kummer’s Theorem
tells us that K = C[

√
α] for some α ∈ C. However, since, by the

above result, α = β2 for some β ∈ C, we see that K = C[
√

α] =
C[β] = C, contradicting the supposition that K is an extension of
degree 2. Therefore, we see that C has no field extensions of degree
2. �

(c): Show that if R ⊂ C ⊂ L are finite field extensions and L is Galois
over R with group G, then G is a 2-group.

Proof. Since, by (a), L must be an even extension of R, #G is divis-
ible by 2, so #G = 2rm for some r ≥ 1 and m relatively prime to 2.
Furthermore, G contains a Sylow 2-subgroup H with #H = 2r.
Now, let K = LH , the fixed field of H; then L is Galois over
K with Galois group H. Furthermore, since [L : R] = 2rm and
[L : K] = #H = 2r, [K : R] = m, which is relatively prime to 2 and,
in particular odd. However, we showed that R has no non-trivial
odd degree extensions, so it must be the case that K = R and so
m = 1. Hence, G = H, so G is a 2-group. �

(d): In the situation of (c), show that L = C.

Proof. Since L is finite over R, L = R[α] for some α ∈ R. Let f be
the minimal polynomial of α over R. Then, since L is Galois over
R, f splits over L. Thus, if g is the minimal polynomial of α over
C, then g|f and so g splits over L, meaning that L is normal over
C. Since C has characteristic 0, L is necessarily separable over C, so
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we see that L is Galois over C. Since [L : R] = 2r and [C : R] = 2,
[L : C] = 2r−1, so #Gal(L/C) = 2r−1. By Cauchy’s Theorem,
Gal(L/C) has a subgroup H1 of order 2. Let K1 = LH1 . Then
[L : K1] = 2r−2, so, if r ≥ 2, [K1 : C] = 2, contradicting the result
proved in (b) above. Therefore, we see that r = 1, meaning that
[L : K] = 2r−1 = 1, so L = C. �

(e): Conclude that C is algebraically closed.

Proof. Suppose K is an algebraic extension of C. Let K̃ be the
algebraic closure of K over C. Then we have R ⊂ C ⊂ K̃ fulfilling
the hypotheses of (c), so, by (c) and (d), K̃ = C. Therefore, K = C.
Since our choice of K was arbitrary, we see that there are no non-
trivial algebraic extensions of C, so C is algebraically closed. �

(f): Deduce in particular that the field C of complex numbers is alge-
braically closed.

Proof. Since R is an ordered field, the elements of R[x] satisfy the
intermediate value theorem, and C = R[x]/(x2 + 1), we see that, by
(a)-(e), C is algebraically closed. �

3

Let p be a prime number, and let K ⊂ L be a field extension of degree
p that is separable but not Galois. Let L̃ be the Galois closure of L over
K. Show that L̃ does not contain any subfield M which is Galois over K of
degree p.

Proof. First, note that, by the primitive element theorem, L = K[α] for
some α ∈ L and the minimal polynomial f of α has degree p. Since L is
separable, f is separable. L̃ is obtained from L simply by adjoining all the
roots of f and any K-automorphism of L̃ permutes the roots of f . Since
there are p roots of f (since f is separable), we see that Gal(L̃/K) is the
subgroup of Sp consisting of the possible permutations of the roots of f . In
particular, this means that #Gal(L̃/K)|p!.

Now, suppose M̃ contains a subfield M which is Galois over K of degree
p. Then Gal(M/K) = Cp. Hence, LM is Galois over L, and Gal(LM/L)
is a subgroup of Cp. Since the only such subgroups are the trivial group
and Cp itself, we see that either Gal(LM/L) = 1 or Gal(LM/L) = Cp.
In the first case, this implies that LM = L, which is impossible, since
this implies M = L and L is not Galois over K. On the other hand, if
Gal(LM/L) = Cp, then we have that L ∩ M = K, which in turn implies
that [LM : K] = [L : K][M : K] = p2. On the other hand,

p2 = [LM : K] | [L̃ : K] = #Gal(L̃/K) = p!.
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This implies that p|(p− 1)!, which is impossible since p is prime. Therefore,
we conclude that, in fact, there is no such M , so L̃ does not contain any
subfield M which is Galois over K of degree p. �

4

(a): Prove that any polynomial f(x) ∈ Q[x] of degree < 5 is solvable
by radicals.

Proof. Clearly, it suffices to show that any irreducible polynomial
f(x) ∈ Q[x] of degree < 5 is solvable by radicals. To that end, let
f(x) ∈ Q[x] be irreducible and of degree n < 5; we may as well
also assume f is monic. Let L be the splitting field of f and let
a1, . . . , an be the roots of f in Q. Then any Q-automorphism of L
consists simply in permuting the ai, so we see that Gal(L/Q) is a
subgroup of Sn. Since any subgroup of a solvable group is solvable
and an irreducible polynomial in Q[x] is solvable by radicals if and
only if the Galois group of its splitting field is solvable, we see that
f is solvable if and only if Sn is solvable.

Now, S1 = 1 and S2 = 2 are trivially solvable. Also, as a subgroup
of S3, 〈(123)〉 ' C3 is of index 2 in S3 and is, therefore, normal.
Hence, we have the composition series

1 C 〈(123)〉C S3,

the the quotients are C3 and C2 from left to right, so we see that S3

is solvable.
Finally, A4 is a subgroup of index 2 in S4, so A4 C S4. Now, let

G = {1, (12)(34), (13)(24), (14)(23)}. Then, as we’ve seen, G C S4,
so G C A4. Furthermore, since #A4 = 12 and #G = 4, it must be
the case that A4/G ' C3. Since A4 ' C2 ×C2, we see that we have
the following composition series for S4:

1 C C2 C G C A4 C S4,

which has quotients C2, C2, C3, C2 from left to right, so we see that
S4 is solvable. Since 1, 2, 3, 4 are the only possibilities for n < 5,
we see that f must be solvable by radicals. Since our choice of f
was arbitrary, we see that any irreducible polynomial f(x) ∈ Q[x] of
degree < 5 is solvable by radicals. �

(b): Find an α ∈ Q whose irreducible polynomial over Q has degree
5, and is solvable by radicals.

Example: Let α = ζ11 + ζ−1
11 . Then, by the result proved in

PS10#2(d), Q(α) is Galois over Q with Galois group C5. Since
Q(α) = Q[x]/(f(x)) where f is the irreducible polynomial of α over
Q, we see that deg f = #Gal(Q(α)/Q) = 5. Furthermore, since C5

is a solvable group (composition series: 1 C C5), we see that f(x) is
solvable by radicals.
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♣

5

(a): Let p be a prime number, and let G be a subgroup of Sp. Suppose
G contains a transposition and a p-cycle. Show that G = Sp.

Proof. Clearly, if p = 2, then S2 = C2, so the only non-identity
element is the unique 2-cycle, so G containing a 2-cycle means G =
S2. Hence, suppose p is an odd prime and suppose (1a1 . . . ap−1) is
the p-cycle in G (we can always write a p-cycle in this form) and
(b1b2) is the transposition in G. Then b1 = ai for some i and b2 = aj

for some j. Then (1a1 . . . ap−1)−1 = (1ap−1 . . . a1) and

(1a1 . . . ap−1)(b1b2)(1ap−1 . . . a1) = (1a2 . . . ap)(aiaj)(1ap . . . a2) = (ai+1aj+1) ∈ G,

where we figure i + 1 and j + 1 module p with a0 = 1. Now,
(1a1 . . . ap−1)2 = (1a2a4 . . . ap−1a1a3 . . . ap−2). Then

(1a2a4 . . . ap−1a1a3 . . . ap−2)(aiaj)(1ap−2ap−4 . . . a1ap−1ap−3 . . . a2) = (ai+2aj+2) ∈ G,

again figuring i + 2 and j + 2 modulo p. Iterating this process, we
see that

(aiaj), (ai+1aj+1), . . . , (ai+(p−1)aj+(p−1)) ∈ G,

where we figure the i+k and j+k modulo p. Now, ai+(p−i) = a0 = 1,
so (1aj+(p−i)) ∈ G. Now, j + (p − i) = i + k1 for some k1, so
(ai+k1aj+(p−i)) ∈ G, and so

(ai+k1aj+(p−i))(1aj+(p−i))(ai+k1aj+(p−i)) = (1ai+k1) ∈ G.

In turn, i + k1 = j + k2 for some k2, so (ai+k2ai+k1) ∈ G and so

(ai+k2ai+k1)(1ai+k1)(ai+k2ai+k1) = (1ai+k2) ∈ G.

Iterating this process, we see that

(12), (13), . . . , (1(p− 1)) ∈ G.

Now, if (ab) ∈ Sp is a transposition, then

(1a)(1b)(1a) = (ab) ∈ G.

Therefore, we see that all transpositions are in G; since the transpo-
sitions generate Sp, this, in turn, implies that Sp ⊂ G. Since G ⊂ Sp,
we see that G = Sp. �

(b): Suppose that f(x) ∈ K[x] is a separable irreducible polynomial
of degree p, and let G be the Galois group of f over K. Show that
G is a subgroup of Sp; that p divides the order of G; and that G
contains a p-cycle.
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Proof. Let L be the splitting field of f over K. Then L is Galois over
K since f is separable. Now, if a1, . . . , ap are the p distinct roots of
f (again, f has exactly p distinct roots since it is separable), then
any K-automorphism of L is a permutation of the ai, so we see that
G = Gal(L/K) ⊂ Sp. Now, K[a1] ⊂ L is a field extension. Since f
is satisfied by a1, the minimal polynomial of a1 over K must divide
f and, hence, since f is irreducible, the minimal polynomial must
also be of degree p. Hence, [K[a1] : K] = p. Since L = K[a1, . . . , ap],

#G = [L : K] = [K[a1] : K][K[a1, a2] : K[a1]] · · · [L : k[a1, . . . , ap−1]],

so, since [K[a1] : K] = p, we see that p divides the order of G. Since
p divides the order of G, G must contain an element of order p, by
Cauchy’s Theorem. Now, the only elements of Sp of order p are the
p-cycles, so we see that G contains a p-cycle. �

(c): Suppose that f(x) ∈ Q[x] is irreducible of degree p and that ex-
actly two of its roots do not lie in R. Let G be the Galois group
of f . Show that G contains a transposition, and deduce that G is
isomorphic to Sp.

Proof. Let L be the splitting field of f . Let a + bi and a− bi be the
two non-real roots of f (we know they are of this form, since any
non-real roots must come in conjugate pairs). Let φ : L → L be the
map such that φ(r) = r for all real r ∈ L and φ(a+bi) = a−bi. Since
L = Q[a1, . . . , ap] where the ai are the roots of f , φ in fact defines
a Q-automorphism of L, since it simply fixes all the ai except a + bi
and a − bi, which it swaps. Hence, φ ∈ G. Since φ ◦ φ = id, φ has
order 2 and so corresponds to a transposition.

Therefore, G contains a transposition and, by our work in (b)
above, a p-cycle. Therefore, by the result proved in (a), G = Sp. �

(d): Deduce that 3x5 − 6x− 2 is not solvable by radicals.

Proof. First, note that 2 does not divide 3, 2 does divide −6 and −2,
but 4 does not divide −2, so, by Eisenstein’s Criterion, 3x5− 6x− 2
is irreducible. Let f(x) = 3x5 − 6x− 2. Then

f ′(x) = 15x4 − 6.

Hence, the only real critical points of f are 4

√
6
15 and − 4

√
6
15 , so f has

at most 2 local extrema and, therefore, f(x) = 0 for at most 3 real
values of x. On the other hand, f(−2) = −86, f(−1) = 1, f(0) = −2
and f(2) = 88, so, by the intermediate value theorem, f has at least
3 real roots: between −2 and −1, between −1 and 0, and between 0
and 2. Therefore, f has exactly 3 real roots and, hence, exactly two
roots that do not lie in R. Hence, if G is the Galois group of f over
Q, G contains a p-cycle by (b) and a transposition by (c), so G = S5,
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by (a). Since S5 is not solvable, we see that f(x) = 3x5 − 6x− 2 is
not solvable by radicals. �

6

For which positive integers n is it possible, with straightedge and compass,
to divide any given angle into n equal parts? Prove your assertions.

Answer: We claim that we can n-sect an angle if and only if n = 2r for
some r ∈ N. Clearly, by iteratively bisecting an angle, we can 2r-sect an
angle for all r ∈ N. On the other hand, note first that if we can mn-sect
an angle for some m,n ∈ N, then, by taking m of the mn-sections that are
adjacent to eachother, we have effectively n-sected the angle. Therefore, it
suffices to show that we cannot p-sect an angle for any odd prime p.

Now, suppose p is an odd prime. Note that, as we saw in class, we can
construct an angle of 2π

n only if we can construct a regular n-gon. Since we
can only construct a regular n-gon if n = 2rp1 · · · pk for pi Fermat primes
and 2 < p1 < . . . < pk, it’s clear that if p is not a Fermat prime, then we
cannot construct a regular 6p-gon, and so we cannot construct an angle of
2π
6p radians. On the other hand, we can construct the angle π

3 = 2π
6 , so this

implies that we cannot p-sect the 60◦ angle. On the other hand, suppose p
is a Fermat prime. Then it is possible that we can construct the angle of
2π
6p radians. If not, then, again, we cannot p-sect the angle π

3 . If so, then we
claim that we cannot p-sect the constructible angle 2π

6p . To see why, simply
note that 6p2 is not of the form 2rp1 · · · pk where the pi are Fermat primes
and 2 < p1 < . . . < pk, since we have 6p2 = 2 · 3 · p · p. 3 and p are Fermat
primes, but p 6< p. Therefore, since we cannot construct the regular 6p2-
gon, we cannot construct the angle 2π

6p2 , which means we cannot p-sect the
constructible angle 2π

6p .
Having examined all cases, we see that we cannot p-sect the angle for any

odd prime p, and so we cannot n-sect an angle unless n = 2r for some r ∈ N.
♣
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