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Suppose k C K is a separable field extension of degree n.
(a): Show that K ~ k[z|/(f(z)) for some f(z) € k[z] of degree n.

Proof. By the primitive element theorem, K = k[a] for some a €
K. If f is the minimal polynomial of a over k, then K = k[a] ~

k[z]/(f(x)). Then
deg f = K : K] =7,
so we see that K ~ k[z|/(f(z)) where f(z) € k[z] has degree n. [
(b): Show that K @ K ~ Kly]/(f(y)) as K-algebras.
Proof. Since K ~ k[z]/(f(x)), we see that

K @ K~ k[z]/(f(z)) @ klyl/(f (v) = klz,y]/(f (@), f(y))-
On the other hand,

Klyl/(f(y)) = (Klzl/(f(2))) W]/ (f(y)) = klz, 91/ (f (@), F (),

so we see that

K @ K ~ klz,y]/(f(2), f(y)) = K[yl/(f(y))-
(]

(c): Deduce that if K is Galois over k, then f(y) splits over K, and
K ®, K ~ K" as K-algebras.

Proof. If K is Galois over k, then, since K ~ k[y]/(f(y)), it must be
the case that f(y) splits over K (else K would not be normal over k).
Hence, f(y) =[]\ (y—ai) for oy € K, i =1,...,n. Since (y—oy) is
maximal in K[y] and (f(2)) = ([T1_, (y— 1)) = (y—aa) -~ (y— ),
we know, by the Chinese Remainder Theorem, that
Kyl/(f(#)) = K[yl/(y — o) x -+ x K[y]/(y — o).

Now, since Ky]/(y — a;) ~ K, this implies that K[y]/(f(x)) ~ K™.
Therefore, using the result from (b) above,

Koy K~ Klyl/(f(x)) ~ K™
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Let R be an ordered field whose squares are the non-negative elements.
Suppose that the elements of R[z] satisfy the intermediate value theorem.
Let C = R[z]/(z? + 1).

(a): Show that R has characteristic 0, and that every odd degree poly-
nomial over R has a root in R. Deduce that every non-trivial Galois
extension of R has even degree.

Proof. Suppose R has characteristic p. Then, since < respects ad-
dition, 1 <141< ... <p—1. However, p—1+1 =0, and so we
have 0 <1 <1+4+1< ... <p—1<0, meaning that 0 = 1, which is
impossible. Therefore, it must be the case that R has characteristic
0.

Now, suppose f is an odd degree polynomial over R. Then f(x) =
a2n+1x2”+1 + ...+ a1x + ag. Suppose asp+1 < 0. Then, for =
sufficiently small, the leading term dominates all other terms so,
since 22"t < 0 for x < 0, f(x9) > 0 for zg sufficiently small. On
the other hand, for > 0, z?"*! > 0, so, for z; sufficiently large,
f(z1) < 0. Therefore, since the elements of R[z] (including f) satisfy
the intermediate value theorem, f(x) = 0 for some 2y < x < .
That is, f has a root in R.

Now, suppose K is a finite extension of R. Then, by the primitive
element theorem, there exists a € K such that K = R[a]. In turn,
since R[a] ~ R[z]/(f(x)) where f(z) € R[z]| is the minimal poly-
nomial of o over R, we see that K ~ R[z]/(f(x)). Now, since f is
irreducible over R, it’s clear that deg f must be even, by the result
proved above. However, since [K : R| = deg f, this in turn means
that K must have even degree as an extension of R. Since our choice
of K was arbitrary, we see that every finite extension of R must be
of even degree. ([

(b): Show that C'is a field, that every element of C' is a square of an
element of C, and that C' has no field extensions of degree 2.

Proof. Since the two roots of 2241 in R are v/—1 and —v/—1 and the
squares in R are the non-negative elements, 2 + 1 is irreducible, so
C = R[z]/(2? +1) is a field. Now, for any element in R[z]/(x?+ 1),
we can reduce higher-order terms by 2 = —1, so a generic element
in C' is of the form a + bz for some a,b € R. If a = b = 0, then it’s

clear that a + bx = 0 + 0x = (0 + O0x)%. Otherwise, let

. a+ Va2 +b? d—é 2
\ 2 2\ a4+ Va2 + 02
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Then, since vVa? + b > |a|, (where |a| = a if a > 0 and |a| = —a if
a <0), so ¢ and d are both in R, and so ¢+ dz € C. Furthermore,

(c+dx)? = — d* + 2cdx

a+ Va2 + b2 b2< 2 >+2 a—+ Va2 + b? b 2
T ——— — e - ZA
2V a+Va%+ b2

_(a—i—\/m)Q_b?( 4 >+ b\/Q(a—i—\/m)
20 +va2+0%) 4 \20a+Va2+0?2)) 2V 2(a+ Va2 +1?)
a® + 2av/a? + b2 + a? + b? b2
T Saivai® | 2aivaim
:2a2+2a\/m+bx

2(a +Va?® +b?)
=a + bx.

2 4 \a+ VaZ + b2 2 2

X

Since our choice of a 4+ bx € C was arbitrary, we see that every
element of C' is a square of an element of C.

Now, suppose K is a field extension of C' of degree 2. Then, since
C' contains a second root of unity (namely —1), Kummer’s Theorem
tells us that K = C[y/a] for some o € C. However, since, by the
above result, @ = (2 for some 3 € C, we see that K = C[\/a] =
C[B] = C, contradicting the supposition that K is an extension of
degree 2. Therefore, we see that C has no field extensions of degree
2. O

(c): Show that if R C C' C L are finite field extensions and L is Galois
over R with group G, then G is a 2-group.

Proof. Since, by (a), L must be an even extension of R, #G is divis-
ible by 2, so #G = 2"m for some r > 1 and m relatively prime to 2.
Furthermore, G contains a Sylow 2-subgroup H with #H = 2".
Now, let K = LY, the fixed field of H; then L is Galois over
K with Galois group H. Furthermore, since [L : R] = 2"m and
[L: K]=#H =2", [K : R| =m, which is relatively prime to 2 and,
in particular odd. However, we showed that R has no non-trivial
odd degree extensions, so it must be the case that K = R and so
m = 1. Hence, G = H, so G is a 2-group. (]

(d): In the situation of (c), show that L = C.

Proof. Since L is finite over R, L = R]a] for some o € R. Let f be
the minimal polynomial of a over R. Then, since L is Galois over
R, f splits over L. Thus, if ¢g is the minimal polynomial of a over
C, then g|f and so g splits over L, meaning that L is normal over
C'. Since C has characteristic 0, L is necessarily separable over C, so
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we see that L is Galois over C. Since [L : R] = 2" and [C : R] = 2,
[L: C] =271 so #Gal(L/C) = 2"~'. By Cauchy’s Theorem,
Gal(L/C) has a subgroup H;j of order 2. Let K; = LH1. Then
[L: K] =272 so,if r > 2, [K;y : C] = 2, contradicting the result
proved in (b) above. Therefore, we see that r = 1, meaning that
[L:K]=2"1'=1,50 L=C. O

(e): Conclude that C' is algebraically closed.

Proof. Suppose K is an algebraic extension of C'. Let K be the
algebraic closure of K over C. Then we have R C C' C K fulfilling
the hypotheses of (c), so, by (¢) and (d), K = C. Therefore, K = C.
Since our choice of K was arbitrary, we see that there are no non-
trivial algebraic extensions of C, so C is algebraically closed. (]

(f): Deduce in particular that the field C of complex numbers is alge-
braically closed.

Proof. Since R is an ordered field, the elements of R[z| satisfy the
intermediate value theorem, and C = R[z]/(2? + 1), we see that, by
(a)-(e), C is algebraically closed. O

3

Let p be a prime number, and let K C L be a field extension of degree
p that is separable but not Galois. Let L be the Galois closure of L over
K. Show that L does not contain any subfield M which is Galois over K of
degree p.

Proof. First, note that, by the primitive element theorem, L = K[a] for
some a € L and the minimal polynomial f of a has degree p. Since L is
separable, f is separable. L is obtained from L simply by adjoining all the
roots of f and any K-automorphism of L permutes the roots of f. Since
there are p roots of f (since f is separable), we see that Gal(L/K) is the
subgroup of S, consisting of the possible permutations of the roots of f. In
particular, this means that #Gal(L/K)|p!.

Now, suppose M contains a subfield M which is Galois over K of degree
p. Then Gal(M/K) = Cp. Hence, LM is Galois over L, and Gal(LM /L)
is a subgroup of C),. Since the only such subgroups are the trivial group
and C) itself, we see that either Gal(LM/L) = 1 or Gal(LM/L) = C,.
In the first case, this implies that LM = L, which is impossible, since
this implies M = L and L is not Galois over K. On the other hand, if
Gal(LM/L) = Cp, then we have that L N M = K, which in turn implies
that [LM : K] = [L : K][M : K] = p%. On the other hand,

p*=[LM : K] | [L: K] = #Cal(L/K) = pl.
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This implies that p|(p — 1)!, which is impossible since p is prime. Therefore,
we conclude that, in fact, there is no such M, so L does not contain any
subfield M which is Galois over K of degree p. U

4

(a): Prove that any polynomial f(z) € Q[x] of degree < 5 is solvable
by radicals.

Proof. Clearly, it suffices to show that any irreducible polynomial
f(z) € Q[z] of degree < 5 is solvable by radicals. To that end, let
f(z) € Q[z] be irreducible and of degree n < 5; we may as well
also assume f is monic. Let L be the splitting field of f and let
ai,...,a, be the roots of f in Q. Then any Q-automorphism of L
consists simply in permuting the a;, so we see that Gal(L/Q) is a
subgroup of S,. Since any subgroup of a solvable group is solvable
and an irreducible polynomial in Q[z] is solvable by radicals if and
only if the Galois group of its splitting field is solvable, we see that
f is solvable if and only if S, is solvable.

Now, S1 = 1 and Sy = 2 are trivially solvable. Also, as a subgroup
of S3, ((123)) ~ Cj5 is of index 2 in S5 and is, therefore, normal.
Hence, we have the composition series

1 <((123)) < S3,

the the quotients are C3 and Cy from left to right, so we see that Sg
is solvable.

Finally, A4 is a subgroup of index 2 in Sy, so A4 <1.S4. Now, let
G = {1,(12)(34),(13)(24),(14)(23)}. Then, as we've seen, G < S4,
so G < A4. Furthermore, since #A44 = 12 and #G = 4, it must be
the case that Ay/G ~ C3. Since Ay ~ Cy x Cy, we see that we have
the following composition series for Sy:

1<Cy <G <Ay <8y,

which has quotients Co, Cs, C5, Co from left to right, so we see that
Sy is solvable. Since 1,2,3,4 are the only possibilities for n < 5,
we see that f must be solvable by radicals. Since our choice of f
was arbitrary, we see that any irreducible polynomial f(z) € Q[z] of
degree < 5 is solvable by radicals. (I

(b): Find an o € Q whose irreducible polynomial over Q has degree
5, and is solvable by radicals.

Example: Let a = (11 + Cil. Then, by the result proved in
PS10#2(d), Q(«) is Galois over Q with Galois group C5. Since
Q(a) = Q[x]/(f(x)) where f is the irreducible polynomial of « over
Q, we see that deg f = #Gal(Q(«)/Q) = 5. Furthermore, since C5
is a solvable group (composition series: 1 <1 Cj5), we see that f(x) is
solvable by radicals.



CLAY SHONKWILER

5

(a): Let p be a prime number, and let G be a subgroup of S,. Suppose

G contains a transposition and a p-cycle. Show that G = 5),.

Proof. Clearly, if p = 2, then Sy = (5, so the only non-identity
element is the unique 2-cycle, so G containing a 2-cycle means G =
Sy. Hence, suppose p is an odd prime and suppose (laj...ap—1) is
the p-cycle in G (we can always write a p-cycle in this form) and
(b1b2) is the transposition in G. Then by = a; for some i and by = a;
for some j. Then (laj...ap—1)"' = (lap—1...a1) and

.. ap_l)(blbg)(lap_l - al) = (1&2 . ap)(aiaj)(lap e ag) = (ai+1aj+1) € G,

where we figure ¢ + 1 and j7 + 1 module p with ag = 1. Now,
(lag ... ap_1)2 = (lagayq ...ap—1a1a3...ap—2). Then

.. ap—10103 . .. ap,Q)(aiaj)(lap,gap,zl .. 010p—10p—3 . .. ag) = (ai+2aj+2) S G,

again figuring ¢ + 2 and j + 2 modulo p. Iterating this process, we
see that

(aiaj), (@iv1a41)s- - -, (ai—l-(p—l)aj—l-(p—l)) €q,
where we figure the i+k and j+k modulo p. Now, a;y,—;) = ap =1,
so (laj;p—iy) € G. Now, j+ (p — i) = i+ ki for some ki, so
(Qitky@j4(p—i)) € G, and so
(@ithr @t (p—i)) (04 (p—i) Qi by G (p—iy) = (Laig,) € G
In turn, i + k1 = j + ko for some ks, so (a;1k,ai+k,) € G and so
(Qiky @ik ) (Lighy )(Qig by Qigk,) = (Laign,) € G
Tterating this process, we see that
(12)a (13)a R (1(]0 - 1)) €G.
Now, if (ab) € S, is a transposition, then
(1a)(1b)(1a) = (ab) € G.

Therefore, we see that all transpositions are in G; since the transpo-
sitions generate S), this, in turn, implies that S, C G. Since G C S,
we see that G = S),. ([

(b): Suppose that f(x) € K[z] is a separable irreducible polynomial

of degree p, and let G be the Galois group of f over K. Show that
G is a subgroup of Sp; that p divides the order of G; and that G
contains a p-cycle.
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Proof. Let L be the splitting field of f over K. Then L is Galois over
K since f is separable. Now, if a1,...,a, are the p distinct roots of
f (again, f has exactly p distinct roots since it is separable), then
any K-automorphism of L is a permutation of the a;, so we see that
G = Gal(L/K) C S,. Now, K[aj] C L is a field extension. Since f
is satisfied by a1, the minimal polynomial of a; over K must divide
f and, hence, since f is irreducible, the minimal polynomial must
also be of degree p. Hence, [K[a;] : K| = p. Since L = Klaq, ..., ap,

#G = [L: K] = [Klay] : K][K[a1,a9) : K[a1]] -+ [L : kla, - ., ap_1]],

so, since [K|a1] : K] = p, we see that p divides the order of G. Since
p divides the order of GG, G must contain an element of order p, by
Cauchy’s Theorem. Now, the only elements of S, of order p are the
p-cycles, so we see that G contains a p-cycle. ([l

(c): Suppose that f(z) € Q[z] is irreducible of degree p and that ex-
actly two of its roots do not lie in R. Let G be the Galois group
of f. Show that G contains a transposition, and deduce that G is
isomorphic to S),.

Proof. Let L be the splitting field of f. Let a + bi and a — bi be the
two non-real roots of f (we know they are of this form, since any
non-real roots must come in conjugate pairs). Let ¢ : L — L be the
map such that ¢(r) = r for all real » € L and ¢(a+bi) = a—bi. Since
L = Qlaz,...,ap] where the a; are the roots of f, ¢ in fact defines
a Q-automorphism of L, since it simply fixes all the a; except a + bi
and a — bi, which it swaps. Hence, ¢ € G. Since ¢ o ¢ = id, ¢ has
order 2 and so corresponds to a transposition.

Therefore, G contains a transposition and, by our work in (b)
above, a p-cycle. Therefore, by the result proved in (a), G = S,. O

(d): Deduce that 32° — 62 — 2 is not solvable by radicals.

Proof. First, note that 2 does not divide 3, 2 does divide —6 and —2,
but 4 does not divide —2, so, by Eisenstein’s Criterion, 3z° — 6z — 2
is irreducible. Let f(x) = 32 — 6z — 2. Then

f'(z) = 152* — 6.

15
at most 2 local extrema and, therefore, f(x) = 0 for at most 3 real
values of . On the other hand, f(—2) = —86, f(—1) =1, f(0) = —2
and f(2) = 88, so, by the intermediate value theorem, f has at least
3 real roots: between —2 and —1, between —1 and 0, and between 0
and 2. Therefore, f has exactly 3 real roots and, hence, exactly two
roots that do not lie in R. Hence, if G is the Galois group of f over
Q, G contains a p-cycle by (b) and a transposition by (c), so G = S5,

Hence, the only real critical points of f are 4/ 1% and —{/-% so f has
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by (a). Since Ss is not solvable, we see that f(z) = 3z° — 62 — 2 is
not solvable by radicals. O

6

For which positive integers n is it possible, with straightedge and compass,
to divide any given angle into n equal parts? Prove your assertions.

Answer: We claim that we can n-sect an angle if and only if n = 2" for
some r € N. Clearly, by iteratively bisecting an angle, we can 2"-sect an
angle for all » € N. On the other hand, note first that if we can mn-sect
an angle for some m,n € N, then, by taking m of the mn-sections that are
adjacent to eachother, we have effectively n-sected the angle. Therefore, it
suffices to show that we cannot p-sect an angle for any odd prime p.

Now, suppose p is an odd prime. Note that, as we saw in class, we can
construct an angle of %’r only if we can construct a regular n-gon. Since we
can only construct a regular n-gon if n = 2"py - - - pg for p; Fermat primes
and 2 < p; < ... < pg, it’s clear that if p is not a Fermat prime, then we
cannot construct a regular 6p-gon, and so we cannot construct an angle of
%—; radians. On the other hand, we can construct the angle 5 = %”, so this
implies that we cannot p-sect the 60° angle. On the other hand, suppose p
is a Fermat prime. Then it is possible that we can construct the angle of

%—; radians. If not, then, again, we cannot p-sect the angle 5. If so, then we

claim that we cannot p-sect the constructible angle 2—;. To see why, simply
note that 6p? is not of the form 2"p; - - - py where the p; are Fermat primes
and 2 < p; < ... < pg, since we have 6p?> =2-3-p-p. 3 and p are Fermat
primes, but p ¢ p. Therefore, since we cannot construct the regular 6p?-
gon, we cannot construct the angle 627”2, which means we cannot p-sect the
constructible angle %—;.

Having examined all cases, we see that we cannot p-sect the angle for any
odd prime p, and so we cannot n-sect an angle unless n = 2" for some r € N.
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