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Conformal Map

We gather here several illustrations of conformal mappings. In certain
cases we discuss the behavior of the map on the boundary of the relevant
domain.
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1. Translation, Dilation and Rotation

Translations and dilations provide the first simple examples. Indeed, if
h ∈ C, the translation z 7→ z + h is a conformal map from C to itself
whose inverse is w 7→ w − h. If h is real, then this translation is also a
conformal map from the upper half-plane to itself. For any non-zero
complex number c , the map f : z 7→ cz is a conformal map from the
complex plane to itself, whose inverse is simply g : w 7→ c−1w . If c has
modulus 1, so that c = e iφ for some real φ then f is a rotation by φ. If
c > 0 then f corresponds to a dilation. Finally, if c < 0 the map f consists
of a dilation by |c | followed by a rotation of π.
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2. Power functions

n ∈ N, z 7→ zn is conformal from the sector
S = {z ∈ C : 0 < arg(z) < π

n } to H with the inverse w 7→ w
1
n defined in

terms of the principal branch of the logarithm.
0 < α < 2, the map z 7→ zα takes H to the sector
S = {w ∈ C : 0 < arg(w) < απ}. Indeed, if we choose the branch of the
logarithm obtained by deleting the positive real axis and z = re iθ with
r > 0 and 0 < θ < π, then f (z) = zα = rαe iαθ. Its inverse is given by

w 7→ w
1
α . We need to choose the branch of the logarithm so that

0 < arg(w) < απ.
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Boundary behavior of f : If x travels from −∞ to 0 on the real line, then
f (x) travels from ∞e iαπ to 0 on the half-line determined by arg(z) = απ.
As x goes from 0 to ∞ on the real line, the image f (x) goes from 0 to ∞
on the real line as well.
By composing the map just discussed with the translations and rotations
in the previous example, we may map the upper half-plane H conformally
to any (infinite) sector in C.
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3. Upper half disc to the first quadrant

The map f (z) = 1+z
1−z takes the upper half disc

D+ = {z = x + iy : |z | < 1 and y > 0} conformally to the first quadrant
H+ = {w = u + iv : u > 0 and v > 0}. Indeed if z = x + iy ∈ D+,i.e.,
x2 + y2 < 1 and y > 0, then we have

f (z) =
1 + x + iy

1− x − iy
=

1− (x2 + y2) + 2iy

(1− x)2 + y2
∈ H+.

The inverse g(w) = w−1
w+1 . is clearly holomorphic in the first quadrant.

Moreover, |w + 1| > |w − 1| for all w in the first quadrant because the
distance from w to −1 is greater than the distance from w to 1; thus g
maps into the unit disc.

g(w) =
u + iv − 1

u + iv + 1
=

u2 + v2 − 1 + 2iv

(u + 1)2 + v2
∈ H

if v > 0.
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To examine the action of f on the boundary, note that if z = e iθ

(0 < θ < π) belongs to the upper half-circle, then

f (e iθ) =
1 + e iθ

1− e iθ
=

e−iθ/2 + e iθ/2

e−iθ/2 − e iθ/2
=

2 cos θ2
−2i sin θ

2

= i cot
θ

2
.

AS θ travels from 0 to π, f (e iθ) travels along the imaginary axis from ∞
to 0. f (x) = 1+x

1−x is a bijection from (−1, 1) to (0,∞).
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4. Logarithm z 7→ log z : H to Strip

The map z 7→ log z , defined as the branch of the logarithm obtained by
deleting the negative imaginary axis, takes the upper half plane H to the
strip {w = u + iv : u ∈ R, 0 < v < π}. Let z = re iθ with −π

2 < θ < 3π
2 ,

then by definition,
log z = log r + iθ.

The inverse map is then w 7→ ew . As x travels from −∞ to 0, the point
f (x) travels from ∞+ iπ to −∞+ iπ on the line
{x + iπ : −∞ < x <∞}. When x travels from 0 to ∞ on the real line,
its image f (x) then goes from −∞ to ∞ along the reals.
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5. Logarithm z 7→ log z : Half disc to the half strip

z 7→ log z also defines a conformal map from the half-disc
{z = x + iy : |z | < 1, y > 0} to the half-strip
{w = u + iv : u < 0, 0 < v < π}. As x travels from 0 to 1 on the real
line, then log x goes from −∞ to 0. When x goes from 1 to −1 on the
half-circle in the upper half-plane, then the point log z travels from 0 to πi
on the vertical segment of the strip. Finally, as x goes from −1 to 0, the
point log x goes from πi to −∞+ πi on the top half-line of the strip.
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6. Exponential z 7→ e iz : Half strip to half disc

The map f (z) = e iz takes the half-strip
{z = x + iy : −pi

2 < x < π
2 , y > 0} conformally to the half-disc

{w = u + iv : |w | < 1, u > 0}. If z = x + iy , then

e iz = e−ye ix .

Boundary behavior; If z goes from π
2 + i∞ to π

2 , then f (z) goes from 0 to
i , and as x goes from π

2 to −π
2 , then f (x) travels from i to −i on the

half-circle. Finally, as z goes from −π
2 to −π

2 + i∞, we see that f (z)
travels from −i back to 0. The mapping f is closely related to the inverse
of the map in Example 5.
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7. z 7→ −1
2(z + 1

z ): Half disc to upper half plane

The function f (z) = −1
2(z + 1

z ) is a conformal map from the half
disk{z = x + iy : |z | < 1, y > 0} to the upper half plane H.
Boundary behavior: If x travels from 0 to 1, then f (x) goes from ∞ to 1
on the real axis. If z = e iθ, then f (e iθ) = − cos θ and as z travels from −1
to 1 along the unit half circle in the upper half-plane, f (z) goes from 1 to
−1 on the real segment. Finally, when x goes from −1 to 0, f(x) goes
from 1 to −infty along the real axis.
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8. sin z : the half strip to the upper half plane

The map f (z) = sin z takes the half-strip
{w = x + iy : −π

2 < x < π
2 , y > 0} conformally onto the upper

half-plane. If ζ = e iz , then

sin z =
e iz − e−iz

2i
=

1

2

(
−iζ +

1

−iζ

)
,

and therefore f is obtained first by applying the map in Example 6, then
multiplying by −i (that is, rotating by −π

2 ), and finally applying the map
in Example 7. Boundary behavior: z travels from −π

2 + i∞ to −π
2 , f (z)

goes from −∞ to −1. When x goes from −π
2 to π

2 , f (x) goes from −1 to
1. Finally, if z goes from π

2 to π
2 + i∞, then f (z) travels from 1 to ∞ on

the real axis.
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