8.3 Riemann Mapping Theorem

Jingzhi Tie

University of Georgia

jtie@uga.edu

8150 Complex Analysis

March 30 - April 28, 2020

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Overview

- 1 Necessary condition
- 2 The proof of existence
- 3 Part (A): $\mathfrak{F}(\Omega)$ is not empty
- Proof of (B)

5 Proof of Part (C)

3

A B M A B M

< 一型

Necessary condition

What is the necessary condition on an open set Ω that guarantee the existence of a conformal map $F : \Omega \to \mathbb{D}$?

- (1) If $\Omega = \mathbb{C}$, and $F : \Omega \to \mathbb{D}$, then F is entire and bounded. Hence F is constant. Hence $\Omega \neq \mathbb{C}$.
- (2) \mathbb{D} is connected $\Longrightarrow \Omega$ is connected.
- (3) \mathbb{D} is simply connected $\Longrightarrow \Omega$ is simply connected.

Theorem 1

Suppose Ω is proper and simply connected. If $z_0 \in \Omega$, then there exists an unique conformal map $F : \Omega \to \mathbb{D}$ such that $F(z_0) = 0$ and $F'(z_0) > 0$.

イロト 不得 トイヨト イヨト 二日

Proof of the corollary

Corollary 2

Any two proper simply connected open subsets in \mathbb{C} are conformally equivalent.

Proof.

Suppose Ω_1 and Ω_2 are proper and simply connected. $F_1 : \Omega_1 \to \mathbb{D}$ and $F_2 : \Omega_2 \to \mathbb{D}$ are conformal mappings. Then $F = F_2^{-1} \circ F_1 : \Omega_1 \to \Omega_2$ are conformal and its inverse is given by $F^{-1} = F_1^{-1} \circ F_2 : \Omega_2 \to \Omega_1$.

くほと くほと くほと

The Proof of the Uniqueness

Proof.

Suppose $F : \Omega \to \mathbb{D}$ and $G : \Omega \to \mathbb{D}$ are conformal and satisfy

$$F(z_0) = G(z_0) = 0$$
 and $F'(z_0) > 0, G'(z_0) > 0.$

Then $H = F \circ G^{-1} : \mathbb{D} \to \mathbb{D}$ and $H(0) = F(G^{-1}(0)) = F(z_0) = 0$ and H'(0) > 0. This implies $H(z) = e^{i\theta}z$ and $H'(z) = e^{i\theta} > 0$. Hence $e^{i\theta} > 0$ and $e^{i\theta} = 1$. $H = F \circ G^{-1} = I$ and F = G

The main idea of the proof of the existence: We consider all injective holomorphic maps $f: \Omega \to \mathbb{D}$ with $f(z_0) = 0$. From these we wish to choose an f so that its image fills out all of \mathbb{D} , and this can be achieved by making $f'(z_0) > 0$ as large as possible. In doing this, we shall need to be able to extract f as a limit from a given sequence of functions.

The main idea of the proof of the existence

We consider the family of \mathfrak{F} of holomorphic functions on Ω defined as follows: $g \in \mathfrak{F}(\Omega)$ if and only if

- (a) $g: \Omega \to D$ is holomorphic and one-to-one in Ω .
- (b) |g(z)| < 1 all $z \in \Omega$.
- (c) $g(z_0) = 0$ and $g'(z_0) > 0$.

We need to prove the following statements:

- (A) $\mathfrak{F}(\Omega)$ is not empty.
- (B) There exists a function $f \in \mathfrak{F}(\Omega)$ such that $g'(z_0) \leq f'(z_0)$ for all $g \in \mathfrak{F}$.
- (C) If $f \in \mathfrak{F}(\Omega)$ satisfies (B), then f is the Riemann mapping, that is, $f(\Omega) = \mathbb{D}, f(z_0) = 0$ and $f'(z_0) > 0$.

The proof of (A)

Since $\Omega \neq \mathbb{C}$, we may take a point $a \notin \Omega$. Let $g(z) = \sqrt{z - a}$ be a branch of the square root function of $z - a \neq 0$, for $z \in \Omega$. g(z) is holomorphic and one-to-one on Ω . Moreover, if g takes the value w in Ω , then it can not take the value -w. $g(\Omega)$ is open and there exists r > 0 with

$$D_r(g(z_0)) = \{w : |w - g(z_0)| < r\} \subset g(\Omega).$$

so we have

$$D_r(-g(z_0)) = \{w: |w+g(z_0)| < r\} \cap g(\Omega) = \emptyset.$$

Hence we have

$$|g(z) + g(z_0)| \ge r$$
 for all $z \in \Omega$.

Then the function

$$g_1(z)=rac{\epsilon}{g(z)+g(z_0)}$$

is holomorphic and one-to-one in Ω and satisfies $|g_1(z)| < 1$ for all $z \in \Omega$ provided that $|\epsilon| < r$.

Jingzhi Tie (UGA)

7 / 13

Construction of an element in $\mathfrak{F}(\Omega)$

We can compose $g_1(z)$ with an automorphism ψ of the unit disc so that $g_0 = \psi \circ g_1(z)$ so that

$$g_0(z_0)=0, \quad g_0'(z_0)>0, ext{ that is } g_0\in \mathfrak{F}(\Omega).$$

Here is how to choose the ψ :

$$\begin{split} \psi(z) &= \psi_{g_1(z_0)}(z) = e^{i\theta} \frac{g_1(z_0) - z}{1 - \overline{g_1(z_0)}z} \\ \implies g_0(z) &= \psi \circ g_1(z) = e^{i\theta} \frac{g_1(z_0) - g_1(z)}{1 - \overline{g_1(z_0)}g_1(z)} \end{split}$$

We have $g_0(z_0) &= 0. \end{split}$

Note that if $\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha} z}$, then $\psi'_{\alpha}(z) = -\frac{1 - |\alpha|^2}{(1 - \bar{\alpha} z)^2}$. Then chain rule yields

$$g_0'(z) = -e^{i heta} rac{1-|g_1(z_0)|^2}{(1-\overline{g_1(z_0)}g_1(z))^2} g_1'(z).$$

This implies

$$g_0'(z_0) = -e^{i heta}rac{1-|g_1(z_0)|^2}{(1-|g_1(z_0)|^2)^2}g_1'(z_0) = -rac{e^{i heta}g_1'(z_0)}{1-|g_1(z_0)|^2}.$$

So we can choose θ so that $-e^{-i\theta} = \arg(g_1'(z_0))$. Therefore we have

$$g_0'(z_0) = rac{|g_1'(z_0)|}{1 - |g_1(z_0)|^2} > 0.$$

In the above construction, the only term that is not explicit is r. We determine r by the set Ω .

Proof of part (B)

By Montel theorem, $\mathfrak{F}(\Omega)$ is normal since |f(z)| < 1 for all $f \in \mathfrak{F}(\Omega)$. Let $M = \sup\{g'(z_0) : g \in \mathfrak{F}(\Omega)\}$. Note that $M \leq \infty$. Let $\{g_n(z)\} \subset \mathfrak{F}(\Omega)$ be a sequence of holomorphic function with $\lim_{n\to\infty} g'_n(z_0) = M$. Since $\mathfrak{F}(\Omega)$ is normal, there exists a subsequence $\{g_{n_k}(z)\}$ which uniformly convergent on compact subsets of Ω , to a function f(z); and in addition

$$\lim_{k\to\infty}g_{n_k}(z)=f(z)\quad\text{uniformly on compact subset of }\Omega.$$

In particular, $M < \infty$ and $f'(z_0) = M$. Then *Hurwitz theorem* implies f(z) must be either one-to-one or constant because $g_{n_k}(z)$ is one-to-one. But $f'(z_0) = M > 0$, hence f is not constant. Moreover

$$f(z_0) = \lim_{k \to \infty} g_{n_k}(z_0) = 0 \text{ and } f'(z_0) = M > 0, \ f \ \text{ is one-to-one} \Longrightarrow f \in \mathfrak{F}(\Omega)$$

Since $f'(z_1) = M = \sup\{g'(z_0) : g \in \mathfrak{F}(\Omega)\}$, We have $g'(z_0) \leq f'(z_0)$ for all $g \in \mathfrak{F}(\Omega)$.

Proof of Part (C)

We will show that if the function f in part (B), then $f(\Omega) = \mathbb{D}$. Suppose not, then there would exist $w_0 \in \mathbb{D}$ such that $w_0 \notin f(\Omega)$. We will construct a function $g_1 \in \mathfrak{F}(\Omega)$ such that $g'_1(z_0) > f'(z_0)$. This will contradict to (B). The function

$$\frac{f(z) - w_0}{1 - \bar{w}_0 f(z)} = -\psi_{w_0}(f(z))$$

is holomorphic and one-to-one from Ω into \mathbb{D} , and does not vanish on Ω since $w_0 \notin f(\Omega)$. Therefore there exists a branch of the square root

$$g(z)=\sqrt{rac{f(z)-w_0}{1-ar w_0 f(z)}}: \ \Omega o \mathbb{D}, ext{ is one-to-one.}$$

Finally we normalized the function so that its derivative at z_0 is positive

$$g_1(z) = rac{|g'(z_0)|}{g'(z_0)} \cdot rac{g(z) - g(z_0)}{1 - \overline{g(z_0)}g(z)}$$

which has the same properties as g(z), and in addition, in normalized so that $g_1(z_0) = 0$ and $g'_1(z_0) > 0$.

Jingzhi Tie (UGA)

Finally we normalized the function so that its derivative at z_0 is positive

$$g_1(z) = rac{|g'(z_0)|}{g'(z_0)} \cdot rac{g(z) - g(z_0)}{1 - \overline{g(z_0)}g(z)}$$

which has the same properties as g(z), and in addition, in normalized so that $g_1(z_0) = 0$ and $g'_1(z_0) > 0$.

The rest is some computation: Note that

$$\frac{d}{dz}\left(\frac{z-\alpha}{1-\bar{\alpha}z}\right) = \frac{1-|\alpha|^2}{(1-\bar{\alpha}z)^2}$$

and Chain rule yields

$$g_1'(z) = rac{|g'(z_0)|}{g'(z_0)} \cdot rac{1 - |g(z_0)|^2}{1 - \overline{g(z_0)}g(z)} \cdot g'(z)$$

Hence

$$g_1'(z_0) = rac{|g'(z_0)|}{1 - |g(z_0)|^2} > 0$$

Comparing $f'(z_0)$ and $g'_1(z_0)$

We first note that $f(z_0) = 0$, $f'(z_0) > 0$ and $(g(z_0))^2 = -w_0$. Differentiate with respect to z of $(g(z))^2 = \frac{f(z) - w_0}{1 - \bar{w}_0 f(z)}$, we obtain

$$2g(z)g'(z) = \frac{1 - |w_0|^2}{(1 - \bar{w}_0 f(z))^2} \cdot f'(z)$$

Evaluate at $z = z_0$:

$$2g(z_0)g'(z_0) = (1 - |w_0|^2)f'(z_0) \implies |g'(z_0)| = \frac{1 - |w_0|^2}{2|g(z_0)|}f'(z_0).$$

Combine this and the last formula in previous page, we have

$$g_{1}'(z_{0}) = \frac{|g'(z_{0})|}{1 - |g(z_{0})|^{2}} = \frac{1 - |w_{0}|^{2}}{2|g(z_{0})|} \cdot \frac{f'(z_{0})}{1 - |g(z_{0})|^{2}}$$
$$= \frac{1 - |w_{0}|^{2}}{2\sqrt{|w_{0}|}} \cdot \frac{f'(z_{0})}{1 - |w_{0}|} \quad \text{here we have used } (g(z_{0}))^{2} = -w_{0}$$
$$= \frac{1 + |w_{0}|}{2\sqrt{|w_{0}|}} f'(z_{0}) > f'(z_{0}) \quad \because \quad \frac{1 + |w_{0}|}{2\sqrt{|w_{0}|}} > 1 \text{(Schwartz inequality)}$$

Jingzhi Tie (UGA)

13 / 13