Fall 2019 Algebra Qualifying Exam Solutions

- 1. Let V be a 5-dimensional vector space over a field F.
 - (a) Let $T: V \to V$ be a linear transformation with characteristic polynomial $(x-1)^3(x-2)^2$ and minimal polynomial $(x-1)^2(x-2)$.
 - i. Write down a matrix which represents T in Jordan normal form.
 - ii. Write down the matrix which represents T in rational normal form.

points

points

points

points

7

- (b) Instead, let $T: V \to V$ be a *nilpotent* linear transformation which has exactly one 2-dimensional invariant subspace.
 - i. How many similarity classes of such linear maps T are there?
 - ii. Assuming finally that F is the finite field \mathbb{F}_q with q elements, find an explicit formula for the number of such linear maps T.

10 120 $\begin{array}{c} F[xc] \bigoplus F[ic] \\ (\chi-i) \end{array} \end{array}$ This is the F[2c]-module FL2C] F[2(1)] (2(-1)) (2(-2)) L_{χ} Ð 2 (7(-2) pc-47c+57c-2 Rivariant factors $\chi^2 - 37(+2)$

(b)
i. One -it is a night Jordan block
$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ii. Orbit site = index of centratizer in $GL_{5}(IF_{2})$
invitible matrices $\begin{pmatrix} a_{b} & c & d \\ a_{b} & c & d \\ 0 & a & b \end{pmatrix} = \begin{pmatrix} 0 & c & 0 \\ 0 & c & 0 \\ 0 & 0 & 0 \end{pmatrix}$
order $(q-1)q^{4}$
 $k(5, 1)(4, 1)(a^{3}, 1)(a^{3}-1)$

$$(1)$$
 (1) $(2^{6}(2^{5}-1)(2^{4}-1)(2^{5}-1)(2^{4}-1))$

2. Let A be a finite-dimensional algebra over a field F equipped with a nondegenerate symmetric bilinear form $(\cdot, \cdot) : A \times A \to F$. Let x_1, \ldots, x_n be a basis for A and y_1, \ldots, y_n be the dual basis with respect to the given form, i.e., $(x_i, y_j) = \delta_{i,j}$ for all $i, j = 1, \ldots, n$.

z

(a) Show that the element

4 points 5+5 points

is well defined independent of the initial choice of the basis x_1, \ldots, x_n .

- (b) Assume for the remainder of the question that the form (\cdot, \cdot) is *invariant*, which means that (ab, c) = (a, bc) for all $a, b, c \in A$. Show that ([a, b], c) = (a, [b, c]) where $[\cdot, \cdot]$ is the commutator.
- (c) Let $a \in A$ be any element and suppose that $[a, x_i] = \sum_{j=1}^n \lambda_{ij} x_j$ and $[a, y_i] = \sum_{j=1}^n \mu_{ij} y_j$ for scalars $\lambda_{ij}, \mu_{ij} \in F$. Show that $\lambda_{ij} + \mu_{ji} = 0$. Deduce that z lies in the *center* of the algebra A. (You may find the identity [a, xy] = [a, x]y + x[a, y] helpful here.)

(a) Let
$$x_{1}', ..., x_{n}'$$
 be another basis with dual basis $y_{1}', ..., y_{n}'$
Say $x_{j}' = \sum_{i}^{2} a_{ij} x_{i}$, $y_{i} = \sum_{j}^{2} b_{ij} y_{j}'$.
 $\Rightarrow (x_{j}', y_{i}) = a_{ij} = b_{ij}$
Then $z = \sum_{i}^{2} x_{i} y_{i} = \sum_{ij}^{2} b_{ij} x_{i} y_{j}'$ The same !
 $z' = \sum_{j}^{2} x_{j}' y_{j}' = \sum_{ij}^{2} a_{ij} x_{i} y_{j}'$ The same !
(b) $([a_{1}b], c) = (ab - ba, c) = (ab, c) - (c, ba)$
 $= (a_{1}bc) - (cb, a) = (a, bc - cb)$
 $= (a, Cb, c])$

To show 2 central, show [a, 2]=0 Ha.

$$\begin{bmatrix} a_{1}z \end{bmatrix} = \sum_{i} \begin{bmatrix} a_{i} x_{i}y_{i} \end{bmatrix} = \sum_{i} \left(\begin{bmatrix} a_{1}x_{i} \end{bmatrix} y_{i} + x_{i} \begin{bmatrix} a_{1}y_{i} \end{bmatrix} \right)$$
$$= \sum_{ij} \lambda_{ij} x_{j} y_{i} + \sum_{ij} x_{i} \lambda_{ij} y_{j}$$
$$= \sum_{ij} \left(\lambda_{ij} + \lambda_{ji} \right) x_{j} y_{i} = O$$

- 3. In this question, R is a ring and $e \in R$ is an idempotent, so that eRe is another ring with identity element e.
 - (a) What does it mean to say that R is *semisimple*? State the Artin-Wedderburn Theorem.
 - (b) If V is a completely reducible R-module of finite length, show that the algebra $\operatorname{End}_R(V)$ is semisimple. Deduce for a semisimple ring R that eRe is semisimple too.

4 points 4+4 points 8 points

(c) Assuming that R is left Artinian, show that J(eRe) = eJ(R)e, where J denotes Jacobson radical.

(a) R is semisciple if R is completely reducible module.

$$AW: R$$
 is semisciple $() R \cong M_{n_1}(D_1) \times \cdots \times M_{n_r}(D_r)$
for $r \ge 0$, $n_1, \ldots, n_r \ge 1$, division algebras $D_{1, \ldots, r}, D_r$.
(could write $()$ with add of $(\times, 0)$ kay to $()$.

Ce) In an Arthrian rig,
$$J(R)$$
 is supplied 2-orded ideal
such that $R/J(R)$ is semisple (characterization)
To use this for question, need to check that R Arthrian
 \Rightarrow ere Arthrian.
 $\exists ere Arthrian$.
 $\lceil Let J_1 \supset J_2 \supset \dots$ be a dami of (left) ideal ii ere.
Then $RJ_1 \supset RJ_2 \supset \dots$ is one i R , so stabilized
 $RJ_n = RJ_{n+1} = \dots$
Now multiply by e :
 $erJ_n = erJ_{n+1} = \dots$
But $erJ_n = ere J_n = J_n$, so this does
the job: $J_n = J_{n+1} = \dots$
 $\exists As J(R)$ is indeplet 2-orded ideal of $R_1 \in J(R)e$ is so it ere
 $eJ(R)e$ is joiningle $\frac{re}{eJ(R)e}$ is semisorial.
This is indeed semisoriale by (b)
This is indeed semisoriale by (b)

- 4. Let G be a finite group. Adopt the usual notation for the character table of G. In particular, $C_1 = \{1\}, C_2, \ldots, C_n$ are the conjugacy classes and $\chi_1 = 1, \chi_2, \ldots, \chi_n$ are the irreducible characters.
 - (a) Let $\rho : G \to GL_n(\mathbb{C})$ be a finite-dimensional representation with associated character χ . Prove that ker $\rho = \{g \in G \mid \chi(g) = \chi(1)\}.$
 - (b) Use the row and column orthogonality relations to work out the values of α, β, γ and δ in the following character table:

	,, , ,			\sim		·			-	
				1	-		- (-	5	1	- 1
		C_1	C_2	C_3	C_4	C_5	C_6	C_7	C_8	C_9
	#	1	1	20	30	12	12	20	12	(2
\rightarrow	χ_1	1	1	1	1	1	1	1	1	1
	χ_2	2	-2	-1	γ	$-\beta$	$-\alpha$	1	α	β
	χ_3	2	-2	-1	γ	$-\alpha$	$-\beta$	1	β	α
>	χ_4	3	3	0	-1	β	α	0	α	β
	χ_5	3	3	0	-1	α	β	0	β	α
· ·	χ_6	4	-4	1	γ	-1	-1	-1	1	1
\rightarrow	χ_7	4	4	1	γ	-1	-1	1	-1	-1
	χ_8	5	5	-1	1	0	0	-1	0	0
	χ_9	δ	$-\delta$	0	γ	1	1	0	-1	-1

6+2 points

(c) Let G be a group with the character table computed in (b). Work out the character table of the group H = G/Z(G), explaining your steps. What group is H?

(a) Take $g \in G$. As $g^{N} = |$ rowe N, the minopoly of g(g)divides $x^{N} - 1$, which has district linear factor. Hence, g(g) is diagonalizable, say to $\begin{pmatrix} G_{1} & O \\ O & C_{n} \end{pmatrix}$, each c_{i} is a noot of unity. So $\chi(g) = C_{1} + \dots + C_{n} \Leftrightarrow \frac{\Delta}{me_{i}} |C_{1} + \dots + C_{n}| \leqslant |C_{i}| + \dots + |C_{n}| = n$, $guality \Leftrightarrow C_{1} = \dots = C_{n}$ Now $\chi(g) = \chi(1) \iff C_{1} + \dots + C_{n} = n$ $\Im Ame_{i}$. $\Leftrightarrow g \in ker g$

6 points

6 points

(b) Note
$$\forall_{i}\beta$$
 are real: - by def. of
 $(\chi_{2}\chi_{2}^{*},\chi_{1}) \stackrel{e}{=} (\chi_{2}\chi_{2}) = 1$
 $\chi_{2}\chi_{2}^{*} - \chi_{1}$ is a character of degree 3 with
no finial constituents, so could only be
 χ_{4} or χ_{5} (using $5 \neq 1$, else what's $\chi_{2}\chi_{q}$?)
Also real-valued, so $\chi_{1}\beta$ are real as values of χ_{4}/χ_{5}
Now dot columns together using this to see:
 $0 = C_{1}.C_{2} \implies S^{2} = 36 \implies S = 6$
 $0 = C_{4}.C_{7} \implies 2\pi = 0 \implies S = 6$
 $0 = C_{4}.C_{5} \implies d+\beta = 1$
 $0 = C_{8}.C_{9} \implies d+\beta = -1$ is differed roots of $\chi_{c}^{2}-\chi_{-1}$

Note now we can also find the conjugacy class sizes. See table.

(c) Z(G) = classes of size | $\therefore Z(G) = C, \cup C_2, size 2, while |G| = 120$ $S_{G} |G/Z(G)| = 60$. $I_{F} C_2 = \{z3, z^2 = 1, so it's either + 1 or -1 on each inneps.$ $I_{F} C_2 = \{z3, z^2 = 1, so it's either + 1 or -1 on each inneps.$ The inneps of G/Z(G) one same as ones of G on which z is +1 Classes in G/Z(G) are either images of 1 or 2 classes in G...

5. The dihedral group $G = \langle a, b \mid a^3 = b^2 = 1, bab = a^{-1} \rangle$ acts on the C-algebra $S = \mathbb{C}[x, y]$ by algebra automorphisms so that

$$a \cdot x = \omega x, \qquad a \cdot y = \omega^{-1} y, \qquad b \cdot x = y,$$

where $\omega = e^{2\pi i/3}$. Let $R := S^G$ be the invariant subalgebra.

- (a) Show that $R = \mathbb{C}[x^3 + y^3, xy]$.
- (b) Show that $R \subseteq S$ is an integral extension.
- (c) Find an explicit monic polynomial $f(t) \in R[t]$ such that f(x) = 0.

(a) Show that
$$R = C[z^3 + y^3, zy]$$

(b) Show that $R = C[z^3 + y^3, zy]$
(c) Find an explicit monic polynomial $f(t) \in R[t]$ such that $f(z) = 0$.
(a) Convidu $2 = \sum C_{ij} c^i y^j \in S$
 $a \cdot 2 = \sum C_{ij} c^{i-j} c^i y^j$
So need $C_{ij} = O$ unless $i \equiv j \pmod{3}$
 $b \cdot 2 = \sum C_{ji} x^i y^j$
So need $C_{ij} = C_{ji} x^i y^j$
So need $C_{ij} = C_{ji} x^i y^j$
So need $C_{ij} = C_{ji} x^i y^j$
Show R is spanned by $x^3 + y^3$ and xy
(yan conget any $x^3 + y^3$ as monomials in these !)
 $\therefore R = C [x^3 + y^3, x_3]$
(b) This is a general fact about invariants of finite groups:
Given $2 \in S$, consider $f(t) = TT (t - g \cdot z)$
(b) This mark in RIT1 with z as a root \Longrightarrow integral.

(c) We the recipe from (b) f(t) = TT (t-g.x) $g \in G$ = $(t - \infty)(t - \omega x)(t - \omega^{2}x)(t - \omega)(t - \omega^{2}y)$ $= (t^3 - 2c^3)(t^3 - y^3)$ $= t^{6} - (x^{3} + y^{3})t^{3} + x^{3}y^{3}$

- 6. Work over an algebraically closed field F of characteristic zero.
 - (a) Let X be an affine variety with coordinate algebra F[X]. State the *Nullstellensatz*. Then use it to show that a subset $S \subseteq X$ is dense (in the Zariski topology) if and only if the following property holds for all $f \in F[X]$:

$$(f(s) = 0 \text{ for all } s \in S) \Rightarrow f = 0.$$

- (b) Given affine varieties X and Y and dense subsets $S \subseteq X$ and $T \subseteq Y$, prove that $S \times T$ is dense in $X \times Y$.
- (c) Show that the integer lattice \mathbb{Z}^n is dense in F^n .

5+5 points 6 points

4 points

S closed subsets } of X Stadical ideals) $V(J) = \{x \in X \mid f(x) = 0 \ \forall f \in J\}$ $I(S) = \{f \in F[X] \mid f(x) = 0 \ \forall x \in S\}$

(a) NSS:

These maps are mutually inverse, inclusion reversing bijectors.
For record part, we read to show
$$S = X \iff I(s) = (0)$$

Claim
$$\overline{S} = V(\overline{I}(S))$$
.
Pf. $S \subseteq V(\overline{I}(S))$ closed hence $\overline{S} \subseteq V(\overline{I}(S))$.
If $S \subseteq V(\overline{J})$ for $\overline{J} = J\overline{J}$, $V(\overline{I}(S)) \subseteq V(\overline{I}(V(\overline{J}))) = V(\overline{J})$
This shows $V(\overline{I}(S)) \subseteq \overline{S}$

Hence,
$$\overline{S} = X \iff V(I(S)) = X$$

 $\implies I(S) = I(X) = (0)$
(b) There are several propose. All should note converse
that FEXXY] = FEXI \otimes FEYI by def of product.
Say $\Theta \in FEXXY$] is zero on $S \times T$.
RTP $\Theta = 0$.
Write $\Theta = \sum_{i} fi \otimes g_i \in FEXI \otimes FEYI$, for bis wind.
For any $t \in T$, $\sum_{i} fi g_i(t) \in FEXI$ is zero on S ,
hence zero as S is dense if X .
As fish are briefly notionally individual, this implies $g_i(t) = 0$ $\forall t \in T$,
So $g_i = 0$ as T is dense if Y .
(c) This follows from (b) by induction on N as
 Z is dense in F (being infinite!).