
Mathematics 504 Autumn 2003

1. Show that any finite abelian group is isomorphic to the direct product of its Sylow subgroups
(without using the fundamental theorem of finitely generated abelian groups).

Solution. We proceed by induction on the number of prime factors in the order of the group. IfG
has orderpn for some primep and integern, thenG equals its Sylowp-subgroup, so is trivially the
product of its Sylow subgroups.

Assume that any abelian group with fewer thanm distinct prime factors is isomorphic to the
product of its Sylow subgroups, and letG be abelian with|G| = pi1

1 . . . pim
m with the p j ’s distinct

primes.
Let H be the subgroup ofG generated by the Sylowp j -subgroups, for 1≤ j ≤ m−1. SinceG

is abelian, every element ofH has order prime topm: H is generated by elements of orderpk
j for

1≤ j ≤ m−1, and the order of the product of commuting elements is the least common multiples
of the orders of the factors. Thus the elements ofH have order dividingpi1

1 · · · p
im−1
m−1. BecauseH has

as subgroups the Sylowp j -subgroups ofG, its order must be at leastpi1
1 . . . pim−1

m−1. Since|H| divides

|G| and sinceH has no elements of orderpk
m for anyk, the order ofH must be exactlypi1

1 . . . pim−1
m−1.

By induction, then, this subgroup is isomorphic to the product of its Sylow subgroups:

H ∼= P1×·· ·×Pm−1,

wherePj is the Sylowp j -subgroup. Now considerH together withPm, the Sylowpm-subgroup.
SinceG is abelian, each of these subgroups is normal. By order considerations, the intersection of
these subgroups is{1} – every element inPm has orderpi

m for somei, while all the elements in
H (except for 1) have order prime topm. Finally, a counting argument shows thatHPm = G: the
elements{hk : h∈ H, k∈ Pm} are distinct, and this set has size|G|.

Thus by the recognition theorem for direct products,

G∼= H×Pm
∼= P1×·· ·×Pm−1×Pm.

2. If K/F is an abelian Galois extension of degree 540= 22× 33× 5, what are the possible
Galois groups? Among all such extensions, what is the maximum number of intermediate fieldsE
such that[K : E] = 2? What is the minimum number?

Solution. By the fundamental theorem for finitely generated abelian groups, the possible Galois
groups are:

C4×C27×C5, C2×C2×C27×C5,
C4×C9×C3×C5, C2×C2×C9×C3×C5,

C4×C3×C3×C3×C5, C2×C2×C3×C3×C3×C5.

Next, according to the fundamental theorem of Galois theory, the intermediate fieldsE with [K :
E] = 2 are in bijection with subgroups of order 2 of the Galois group. Any subgroups of order 2
of the Galois group will be contained in the Sylow 2-subgroup, which is eitherC4 or C2×C2, so it



suffices to count the number of subgroups of order 2 in each of these groups.C4 = {1,a,a2,a3} has
a unique subgroup of order 2:{1,a2}. C2×C2 = {1,a,b,ab} has 3 subgroups of order 2:{1,a},
{1,b}, {1,ab}. So the maximum number is 3, and the minimum number is 1.

3. Assume thatG is a group of order 231= 3×7×11. Show thatG contains a normal Sylow
7-subgroup and a central Sylow 11-subgroup.

Solution. According to the Sylow theorems,n3 is congruent to 1 mod 3, and divides 77; thusn3 is
either 1 or 7.n7 is congruent to 1 mod 7 and divides 33, and so equals 1.n11 is congruent to 1 mod
11 and divides 21, and so equals 1. Thus there is a normal Sylow 7-subgroup and a normal Sylow
11-subgroup.

Let P be the normal Sylow 11-subgroup.P is isomorphic toC11; let x be a generator.
To show thatP is central, it suffices to show thatx commutes with every element ofG. The map

g 7−→ gxg−1 sends each group elementg to an automorphism ofP=C11; in other words, this defines
a group homomorphismG→ Aut(C11). Aut(C11) is isomorphic toC10. The order of the image ofG
must divide 10, and also must divide the order ofG; thus the image ofG must be 1: every element
of g maps to the identity automorphism. That is, for allg∈ G, gxg−1 = x, sox is central, and soP
is central.

4. Let p be a prime andn a positive integer. Use the fundamental theorem of Galois theory and
facts about the extensionFpn/Fp to classify the subfields ofFpn.

Solution. Every subfield ofFpn must contain 1, and so must contain the prime fieldFp. Thus the
subfields ofFpn are precisely the intermediate fields in this extension. The extensionFpn/Fp is
Galois, with Galois groupG∼= Cn, generated by the Frobeniusϕ. The subgroups ofCn are the
groupsCd, generated byϕd, for each divisord of n.

According to the fundamental theorem of Galois theory, there is a bijection between the sub-
groups of the Galois groups and the intermediate fields, sending a subgroupH to its fixed field.
The order of the group equals the degree of the big field over the fixed field. So in our case,Cd

corresponds to a fieldF so that[Fpn : F ] = d, which means thatF haspn/d elements. Finite fields
are unique up to isomorphism, soF must beFpn/d.

So the subfields ofFpn are the fieldsFpd, for all divisorsd of n.

5. LetF be a field and letp(x) be an irreducible polynomial inF [x]. Let K be the splitting field
of p(x). Show that the Galois groupG = Gal(K/F) acts transitively on the roots ofp(x). (For full
credit, do this without using the fundamental theorem of Galois theory.)

Solution. Let α1, . . . , αn be the roots ofp(x). SinceG fixes the fieldF , G fixes the coefficients
of p(x), and so for any elementσ of G, σ permutes the roots ofp(x). (For any elementc of F ,
σ(p(c)) = p(σ(c)). So if p(c) = 0, thenσ(p(c)) = 0, sop(σ(c)) = 0. That is, ifc is a root, so is
σ(c).)
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Let β1 = α1, β2, . . . ,βm be the distinct Galois conjugates ofα1. Then I claim that

h(x) = (x−β1)(x−β2) · · ·(x−βm)

is fixed by the action ofG: for any i, βi = σiα1 for someσi ∈G, so for anyτ ∈G,

τ(βi) = (τσi)α1 = σ jα1 = β j

for some j. SoG acts onh(x) by permuting the factors, and soh(x) is fixed byG. Thush(x) ∈
F [x], and it hasα1 as a root. Note also thath(x) divides p(x), since the roots ofh(x) form a
subset of the roots ofp(x). On the other hand,p(x) has coefficients inF and hasα1 as a root, and
p(x) is irreducible; thusp(x) must be the minimal polynomial forα1. By uniqueness of minimal
polynomials,p(x) must divideh(x). Sincep(x) andh(x) divide each other, they must be scalar
multiples of each other, and so all of the roots ofp(x) are actually roots ofh(x): everyαi is a Galois
conjugate ofα1.

6. Let K/F be a field extension, and fixa∈ K. Show thatF(a) is algebraic overF if and only
if [F(a) : F ] is finite. Use this to prove that sums, differences, products, and quotients of algebraic
elements are algebraic.

Solution. If F(a)/F is algebraic, then the elementa is algebraic overF , and so it satisfies some
polynomial

g(x) = xn +bn−1xn−1 + · · ·+b1x+b0 ∈ F [x].

Thusan can be written in terms of smaller powers ofa, and by induction, for anym≥ n, am can
be written in terms of 1, . . . ,an−1. Thus the elements{a j : 0 ≤ j ≤ n− 1} spanF(a), and so
[F(a) : F ]≤ n. (Alternatively, if we assume thatg(x) is the minimal polynomial fora, thenF(a)∼=
F [x]/(g(x)), which is ann-dimensional vector space overF .)

Conversely, suppose that[F(a) : F ] is finite. For anyb∈F(a), the elements 1,b,b2,b3, . . . cannot
be linearly independent – there must be some numbern and some elementsci ∈ F so that

cnbn +cn−1bn−1 + · · ·+c1b+c0 = 0

Thusb is a root of the polynomialf (x) = cnxn + · · ·+ c0 ∈ F [x], which means thatb is algebraic.
This holds for anyb∈ F(a), and thusF(a) is algebraic overF .

Now given an extensionK/F and two elementsa andb of K which are algebraic overF , then
I claim that[F(a,b) : F ] is finite. First note thatF(a,b) = F(a)(b). b satisfies a polynomial with
coefficients inF , and I can view the same polynomial as having coefficients inF(a), and thusb is
algebraic overF(a), so [F(a)(b) : F(a)] is finite. a is algebraic overF , so [F(a) : F ] is finite. By
multiplicativity of degrees of field extensions,[F(a,b) : F ] = [F(a,b) : F(a)][F(a) : F ] is finite. Thus
every element inF(a,b) is algebraic overF : for any c ∈ F(a,b), [F(c) : F ] divides [F(a,b) : F ],
hence is finite, and hencec is algebraic. The fieldF(a,b) containsa+ b, a− b, ab, and (if b is
nonzero)ab−1 = a/b; and so all of these elements are algebraic.
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7. Suppose thatf (x) is a degree 4 polynomial with coefficients in a fieldF , and letK be the
splitting field of f (x). What are the possible values for[K : F ]? Give examples for as many of those
values as you can. (You should be able to do more than half of the possibilities; I will be impressed
if you can find examples for all of them.)

Solution. [K : F ] must divide 4!= 24, so the possible values are 1, 2, 3, 4, 6, 8, 12, and 24. Here are
examples:

1. For any fieldF , x4 splits overF , and soK = F and[K : F ] = 1.

2. LetF = Q. Thenx2(x2−2) does not split completely overQ (because
√

2 6∈ Q), but it does
split overQ(

√
2). ThusK = Q(

√
2), and[K : F ] = 2.

3. Let F = F2, for a change of pace. The polynomialp(x) = x3 + x+ 1 ∈ F2[x] is irreducible,
sox(x3 +x+1) does not split overF2. p(x) does have a root inF8

∼= F2[x]/(p(x)), and since
F8/F2 is Galois, once an irreducible polynomial has one root inF8, it splits completely there.
So the splitting field isF8, which has degree 3 overF2.

4. LetF = Q. Then the splitting field of(x2−2)(x2−3) is Q(
√

2,
√

3). The biquadratic exten-
sionQ(

√
2,
√

3)/Q has degree 4.

24. LetL be a field, letK = L(x1,x2,x3,x4), and letF = L(s1,s2,s3,s4), wheresi is theith elemen-
tary symmetric polynomial inx1, . . . ,x4. Then

(x−x1)(x−x2)(x−x3)(x−x4)

lies inF [x], and its splitting field isK. The degree ofK overF is 4! = 24.

I thought of those examples first. Here are some other ones:

6. One easy way to do this: find an irreducible degree 3 polynomial with Galois groupS3 and
multiply it by x. For example, I could imitate the degree 24 case and look atx(x− x1)(x−
x2)(x− x3) in L(s1,s2,s3)[x]. Alternatively, I could explain whyx3− 2 ∈ Q[x] has Galois
groupS3 (its splitting field isQ( 3

√
2,ζ) whereζ is a primitive cube root of unity), and look at

x(x3−2).

8. We did one like this in class: letF = Q and look atx4−2. Then its splitting field isQ(21/4, i),
which has degree 8 overQ.

12. For this one, I need a polynomial whose Galois group is isomorphic toA4. This is harder to
come up with off the top of my head. I guess a cheap way to do it would be to modify the
degree 24 case: letL be a field, letK = L(x1,x2,x3,x4), and letF = L(s1,s2,s3,s4), wheresi

is the ith elementary symmetric polynomial inx1, . . . , x4. ThenK/F is Galois with Galois
groupS4, so letE be the fixed field of the subgroupA4≤ S4. Then[K : E] = |A4|= 12, andK
is the splitting field of the polynomial

(x−x1)(x−x2)(x−x3)(x−x4),

which I can view as lying inE[x]. (I could have done lots of these examples this way, I
suppose. . . )
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