
ALGEBRA HW 4

CLAY SHONKWILER

3.2.19

Prove that if N is a normal subgroup of the finite group G and (|N |, |G :
N |) = 1 then N is the unique subgroup of G of order |N |.

Proof. Let H ≤ G such that |H| = |N |. By Proposition 13,

|NH| = |N ||H|
|N ∩H|

=
|N |2

|N ∩H|
= |N | |N |

|N ∩H|
Since N is normal, NH ≤ G by Corollary 15, so |NH| divides |G|, or

|G| = m|NH| = m|N | |N |
|N ∩H|

.

On the other hand,
|G| = |G : N ||N |,

so
|N ||G : N | = |N |m |N |

|N∩H| cancelling yields

|G : N | = m |N |
|N∩H| .

Hence, |N |
|N∩H| divides both |N | and |G : N | so, by hypothesis,

|N |
|N ∩H|

= 1

Therefore, |N ∩H| = |N |, which means, since |H| = |N |, that H = N . We
conclude, then, that N is the unique subgroup of G with order |N |. �

3.4.2

Find all 3 composition series for Q8 and all 7 composition series for D8.
List the composition factors in each case.

Answer:
1 E {1,−1}E {1,−1, i,−i}E Q8

1 E {1,−1}E {1,−1, j,−j}E Q8

and
1 E {1,−1}E {1,−1, k,−k}E Q8

where, in each case, Ni+1/Ni = Z/2Z.

1 E 〈s〉E 〈s, r2〉E D8

1 E 〈r2〉E 〈s, r2〉E D8
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1 E 〈r2〉E 〈r〉E D8

1 E 〈sr〉E 〈sr, sr3〉E D8

1 E 〈sr3〉E 〈sr, sr3〉E D8

1 E 〈sr2〉E 〈s, sr2〉E D8

and
1 E 〈s〉E 〈s, sr2〉E D8

where, in each case, Ni+1/Ni = Z/2Z.
♣

3.4.5

Prove that subgroups and quotient groups of a solvable group are solvable.

Proof. Let G be a solvable group with composition series

1 = G0 E G1 E . . . E Gn = G.

Let H ≤ G. Consider H ∩ Gi and H ∩ Gi+1. Each is clearly a group. If
g ∈ H ∩ Gi and h ∈ H ∩ Gi+1, then hgh−1 ∈ H since g, h ∈ H. Also,
hgh−1 ∈ Gi, since Gi E Gi+1, so we can conclude that

H ∩Gi E H ∩Gi+1.

This also implies that H ∩ Gi+1 ≤ NG(H ∩ Gi). Hence, we see that H is
solvable, as we can construct the series

1 E H ∩G1 E . . .H ∩Gn−1 E H ∩Gn = H ∩G = H.

�

3.5.4

Show that Sn = 〈(12), (123 . . . n)〉 for all n ≥ 2.

Proof. We want to show that for any transposition (pq) where p < q, (pq) ∈
〈(12), (123 . . . n)〉. Now,

(12 . . . n)(12)(12 . . . n)−1 = (12 . . . n)(12)(1n . . . 2) = (23)

and, in general,

(12 . . . n)(m(m + 1))(12 . . . n)−1 = ((m + 1)(m + 2)).

Furthermore, for a transposition (pq),

(pq) = ((q − 1)q) . . . ((p + 1)(p + 2))(p(p + 1))((p + 1)(p + 2)) . . . ((q − 1)q).

Since each term on the right is generated by (12) and (12 . . . n), then so
is (pq). Since our choice of transposition was arbitrary, we see that every
transposition in Sn is in 〈(12), (12 . . . n)〉. Since, as we’ve seen, every element
of Sn can be written as a product of transpositions, we see that, for all
σ ∈ Sn, σ ∈ 〈(12), (12 . . . n)〉. Hence, Sn = 〈(12), (12 . . . n)〉. �
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3.5.10

Find a composition series for A4. Deduce that A4 is solvable.
Answer:

1 E 〈(12)(34)〉E 〈(12)(34), (13)(24)〉E A4

is a composition series of A4. To see that A4 is, in fact, solvable, it suffices
to note that

〈(12)(34)〉/1 ' Z/2Z

〈(12)(34), (13)(24)〉/〈(12)(34)〉 ' Z/2Z

and

A4/〈(12)(34), (13)(24)〉 ' Z/3Z,

each of which is a simple abelian group.

♣

1

Let G be a group. The opposite group, Gop, is the group which is equal
to G as a set, whose group law µ′ is defined by

µ′(x, y) = µG(y, x) ∀x, y ∈ Gop.

Prove that Gop is isomorphic to G.

Proof. Define φ : G → Gop by

φ(x) = x−1.

This is well-defined since x−1 ∈ G is equal to x−1 ∈ Gop. Then

ker(φ){x ∈ G|x−1 = 1} = {1}

so φ is injective. Also, for any x ∈ Gop,

φ(x−1) = (x−1)−1 = x,

so φ is surjective. Finally, for x, y ∈ G,

φ(µ(x, y)) = µ(x, y)−1 = µ(y−1, x−1) = µ′(x−1, y−1) = µ′(φ(x), φ(y)),

so φ is a homomorphism. Since φ is a bijective homomorphism, it is an
isomorphism. �



4 CLAY SHONKWILER

2

Two homomorphisms f1, f2 from a group G1 to a group G2 are conjugate
if there exists an element g ∈ G2 such that f1(x) = gf2(x)g−1 for all x ∈ G1.

(a) Find all homomorphisms from S3 to C×.
Let f : S3 → C× be a homomorphism. Then ker(f)ES3. We know, from

the last homework, that {1}, 〈(12)〉, 〈(13)〉, 〈(23)〉, 〈(123)〉, S3 comprises the
entire list of subgroups of S3. If ker(f) = {1}, then f is a monomorphism,
meaning S3 ' f(S3). However, S3 is not abelian, whereas C× is, so this is
impossible. If ker(f) = S3, then f is just the trivial homomorphism.

Now, we know that f induces an isomorphism f ′ : S3/ker(f) → f(S3). If
|ker(f)| = 2, then

S3/ker(f) ' Z/3Z,

meaning f(S3) is a cyclic subgroup of C× of order 3. The only such group

is the group of 3rd roots of unity, {1, e
2π
√
−1

3 , e
4π
√
−1

3 }. Hence, there are
precisely two possibilities for f ′ given ker(f). For example, if ker(f) =
〈(12)〉, then

S3/ker(f) = S3/〈(12)〉 = {〈(12)〉, (13)〈(12)〉, (23)〈(12)〉}.

Then f ′(〈(12)〉) = 1, f ′((13)〈(12)〉) = e
2π
√
−1

3 or f ′((13)〈(12)〉) = e
4π
√
−1

3 and
f ′((23)〈(12)〉) is whatever remains. Hence, we deduce that

f(1) = f((12)) = 1, f((13)) = f((123)) = e
2π
√
−1

3 , f((23)) = f((132)) = e
4π
√
−1

3

or

f(1) = f((12)) = 1, f((13)) = f((123)) = e
4π
√
−1

3 , f((23)) = f((132)) = e
2π
√
−1

3 .

Similarly, if ker(f) = 〈(13)〉, then

f(1) = f((13)) = 1, f((12)) = f((132)) = e
2π
√
−1

3 , f((23)) = f((123)) = e
4π
√
−1

3

or

f(1) = f((13)) = 1, f((12)) = f((132)) = e
4π
√
−1

3 , f((23)) = f((123)) = e
2π
√
−1

3

and if ker(f) = 〈(23)〉, then

f(1) = f((23)) = 1, f((12)) = f((123)) = e
2π
√
−1

3 , f((13)) = f((132)) = e
4π
√
−1

3

or

f(1) = f((23)) = 1, f((12)) = f((123)) = e
4π
√
−1

3 , f((13)) = f((132)) = e
2π
√
−1

3 .

Finally, if |ker(f)| = 3, then ker(f) = 〈(123)〉, so

S3/ker(f) ' Z/2Z.

That is to say that f(S3) is a cyclic group of order two in C×. The only
such possibility is the group {1,−1}. This means f(〈(123)〉) = 1 and
f((12)〈(123)〉) = −1. Specifically,

f(1) = f((123)) = f((132)) = 1, f((12)) = f((13)) = f((23)) = −1.
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Therefore, the above constitute all possible homomorphisms from S3 to
C×.

♣
(b) Determine all homomorphisms from S3 to S3 up to conjugation.
Clearly the trivial homomorphism f(x) = 1 for all x ∈ S3 is one such.

Replacing e
2π
√
−1

3 with (123) and e
4π
√
−1

3 with (132) makes it clear that the
only such homomorphisms having 〈(12)〉 as their kernel are f and g such
that:

f(1) = f((12)) = 1, f((13)) = f((123)) = (123), f((23)) = f((132)) = (132)

and

g(1) = g((12)) = 1, g((13)) = g((123)) = (132), g((23)) = g((132)) = (123).

However, f(x) = (12)g(x)(12) for all x ∈ S3, so these two homomorphisms
are conjugate. A similar argument gives a single homomorphism (up to
conjugation) for each kernel 〈(13)〉 and 〈(23)〉. However, homomorphisms
with different kernels of degree two will not be conjugate, as can be sen
simply by noting that there is no x ∈ S3 such that x(123)x−1 = 1.

Now, if f is a homomorphism with kernel 〈(123)〉, then, paralleling our
arguments in the previous part, we see that either

f(1) = f((123)) = f((132)) = 1, f((12)) = f((13)) = f((23)) = (12)

or

f(1) = f((123)) = f((132)) = 1, f((12)) = f((13)) = f((23)) = (13)

or

f(1) = f((123)) = f((132)) = 1, f((12)) = f((13)) = f((23)) = (23).

If we call the first of these possibilities f1, the second f2 and the third f3,
then it is readily apparent that f1(x) = (23)f2(x)(23), f1(x) = (13)f3(x)(13)
and f2(x) = (12)f3(x)(12) for all x ∈ S3, so f1, f2 and f3 are conjugate.

Finally, if the kernel of a homomorphism from S3 to S3 is trivial, then
that homomorphism is, in fact, an automorphism. In the last homework,
we saw that any automorphism f of S3 is of the form

f(x) = axa−1

for some a ∈ S3 and for all x ∈ S3. Hence, if f and g are two automorphisms
of S3, then f(x) = axa−1 and g(x) = bxb−1 for some a, b ∈ S3. However,

g(x) = bxb−1 = b(a−1a)x(a−1a)b−1 = (ba−1)(axa−1)(ab−1) = (ba−1)f(x)(ba−1)−1,

so f and g are conjugate. Therefore, we conclude that, up to conjugation,
there is exactly one homomorphism of S3 into itself for each of the 6 possible
kernels.

♣
(c) Prove that any two injective homomorphisms from S3 to GL2(R) are

conjugate.
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Proof. Let f and g be monomorphisms from S3 to GL2(R). Then f(S3) and
g(S3) are isomorphic to S3. Consider the map g−1 ◦ f : S3 → S3. Note that
g−1 is an isomorphism. If x, y ∈ S3 such that (g−1 ◦ f)(x) = (g−1 ◦ f)(y),
then

g−1(f(x)) = g−1(f(y))
so f(x) = f(y), meaning x = y, so g−1 ◦ f is injective. Since S3 is finite,
g−1 ◦ f is clearly surjective. Also, if x, y ∈ S3,

(g−1◦f)(xy) = g−1(f(xy)) = g−1(f(x)f(y)) = g−1(f(x))g−1(f(y)) = (g−1◦f)(x)(g−1◦f)(y),

so g−1 ◦ f is an automorphism. Hence, as shown in last week’s homework,
there exists τ ∈ S3 such that

(g−1 ◦ f)(x) = τxτ−1

for all x ∈ S3. Now,

f(x) = ((g◦g−1)◦f)(x) = (g◦(g−1◦f))(x) = g((g−1◦f)(x)) = g(τxτ−1) = g(τ)g(x)g(τ−1),

so we see that f and g are conjugate. Since our choice of f and g was
arbitrary, we conclude that any two monomorphisms from S3 to GL2(R) are
conjugate. �
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