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1 Groups

1 (group + 5 properties)

1. associativity (ab)c = a(bc)

2. identity element

3. inverses

A monoid satisfies (1) and (2).

A semigroup satisfies (1).

Properties:

• identity is unique

• inverse is unique

• (a−1)−1 = a

• (ab)−1 = b−1a−1

• a1a2...an is well-defined

A group is called abelian if ab = ba for all a, b ∈ G.

ex. (Z,+), (Q,+), (Q?,×), vector spaces wrt addition, Z/nZ = Zn

GLn(R) = {A ∈Mn(R) with det(A) 6= 0}

SLn(R) = {A ∈Mn(R) with det(A) = 1}

2 (Sn, An, Dn) Sn = group of permutations on {1, 2, ..., n} ie. bijections from {1, 2, ..., n}
to itself

An = even permutations in Sn

Dn = group of symmetries on a regular n-gon

|Sn| = n!|, An| = n!/2, |Dn| = 2n

3 (subgroup) A non-empty subset H in G such that

1. g, h ∈ H then gh ∈ H

2. g ∈ H then g−1 ∈ H
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Subgroup criterion: for g, h ∈ H then gh−1 ∈ H

For S subset of G, the subgroup generated by S is denoted 〈S〉 and is the smallest subgroup

containing S (ie. intersection of all subgroups containing S). It consists of all products

ga11 ...g
am
m where gi ∈ S and ai ∈ Z.

4 (homomorphism) a map f : G → H between groups is a homomorphism if f(ab) =

f(a)f(b).

f(g) = e is the trivial homomorphism.

A homomorphism is called

• a monomorphism if it is injective

• epimorphism if it is onto

• isomorphism if it is bijective (ie. it has an inverse). If ∃f : G → H isomorphism, we

write G ∼= H

5 (equivalence relation) ∼ is an equivalence relation if

1. a ∼ a

2. if a ∼ b then b ∼ a

3. if a ∼ b and b ∼ c then a ∼ c

ex. for H ≤ G define g ∼ h if gh−1 ∈ H

6 (cosets) We call gH a left coset. The set of left cosets is denoted G/H.

Note: the map aH ↔ Ha is not well-defined.

ex. G = S3, H = 〈(12)〉, then H(13) = H(132) but (13)H 6= (123)H.

7 (Lagrange’s Theorem) If H ≤ G then |H| divides |G|

Corollary 1: If |G| is prime, the only subgroups are the trivial ones

Corollary 2: If |G| is prime, then G is cyclic

8 (index) |G/H| = [G : H]

If G is finite, [G : H] = |G|/|H|

If G > H > K, then [G : K] = [G : H][H : K]
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9 (completely classify 〈g〉) If all gn are different, then 〈g〉 ∼= Z. If not, then ker is a

non-zero subgroup of Z. Let d = min(H ∩ Z) so dZ ∼= ker(n 7→ gn). Then 〈g〉 ∼= Z/dZ.

10 (normal subgroup) We say H ≤ G is normal if gH = Hg.Equivalently, g−1Hg = g.

We write H CG.

Theorem: If [G : H] = 2 then H CG

11 (conjugation) Conjugation by g ∈ G is the map x 7→ g−1xg. This is an isomorphism

(an isomorphism with itself is called an automorphism). We write it as xg = g−1xg

12 (simple) A group is simple if the only normal subgroups of G are G and {e}

ex. Zp for prime p are simple

ex. An for n ≥ 5 is simple

13 (coset representations) The multiplication (gH)(hH) = (gh)H is well defined ⇔
H CG

G/H is then a group. Note: the map g 7→ gH is a homomorphism and is called the “canonical

epimorphism”

14 (First Isomorphism Theorem) Let ϕ : G→ H be a homomorphism. Then ϕ(G) ∼=
G/ ker(ϕ). Moreover, the isomorphism is the map which sends ϕ(g) to g(kerϕ)

Proof: well-defined, onto, one-to-one

15 (center) Z(G) = {h ∈ G | gh = hg ∀g ∈ G}.

This is normal in G

16 (propositions for normal) .

Proposition 1: If H < G and N CG then H ∩N CN

Proposition 2: If H < G and N CG then N C 〈H ∪N〉 = HN = NH.

Proposition 3: If N and K are normal in G then N ∩K CG

Proposition 4: G/(N ∩K) is isomorphic to a subgroup of G/N ×G/K

17 (2nd and 3rd Isomorphism Theorems) 2nd Isomorphism Theorem: For H < G,

N CG then HN/N ∼= H/(N ∩H)

3rd Isomorphism Theorem: If NCG and KCG and K ≤ N (so KCN) then N/KCG/K
and (G/K)/(N/K) ∼= G/N

(should also probably know proofs of these two)
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18 (direct product) Let Gi be a collection of groups. Then Πi∈IGi = {(gi)i∈I | gi ∈ Gi}
is the direct product of the groups.

We have multiplication (gi)(hi) = (gihi)

πj : ΠGi → Gj is the projection (this is an epimorphism)

If H is a group and φi : H → Gi are homomorphisms then we have a homomorphism

Ψ : H → ΠGi which sends h to (φi(h)). This is uniquely determined by πi ◦Ψ = φi

19 (free group, normal closure, free abelian group) The free group generated by S

is the set of all products of {ai} and their inverses. Its elements are all products of aε1i1 . . . a
εk
ik

where εi ∈ {−1, 1}.

The normal closure of R is the smallest normal subgroup containing R, denoted 〈〉. Its

elements are all products of the form (g−11 )(rε11 )(g1)...(g
−1
n )(rεnn )(gn) where εi ∈ {−1, 1}

The free abelian group generated by two elements is written 〈a, b|ab = ba〉.

20 (action) A (left) action of a group G on a set X is a map G ×X → X, (g, x) 7→ gx

satisfying:

1. ex = x

2. (g1g2)x = g1(g2x)

We call an action faithful if it is injective. The kernel of the action is the group of elements

g acting identically (gx = x for all x ∈ X). The stabilizer of x is the group Gx = {g ∈ G |
gx = x} < G.

21 (equivalence classes of an orbit + transitive + free + Theorem) We say x ∼ y

if there exists g ∈ G such that gx = y

The equivalence classes are called the orbits of the action

An action is called transitive if it only has one orbit

An action is called free if every stabilizer is trivial

ex. every group acts on itself by multiplication on the left. Here, the action is free.

Theorem: Let G act on X freely and transitively. Then there exists a bijection φ : X → G

such that φ(gx) = gφ(x)

Theorem: If an action of G on X is transitive then |X| = [G : Gx] for any x

ex. for every g, x 7→ xg = g−1xg is an automorphism of G on itself

22 (center + stabilizer + centralizer + normalizer) Z(G) = {g : gx = xg ∀x ∈ G}
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this is the center of G.

For h ∈ G, the stabilizer of h is {g | gh = hg}, also called the centralizer of h

If A ⊆ G then the centralizer of A is ZG(A) = {g ∈ G | ga = ag ∀a ∈ A}

If H ≤ G, then the normalizer of H is {g ∈ G | H = g−1Hg}

23 (free abelian group generated by S) The free abelian group generated by S is

{sj | sisj = sjsi ∀si ∈ S}

All other abelian groups generated by S are natural homomorphism images of that

24 (Fundamental Theorem on finitely generated abelian groups) If G is a finitely

generated abelian group, then there exists unique d1|d2|...|dk and r ≥ 0 such that

G = Cd1 ⊕ Cd2 ⊕ ...⊕ Cdk ⊕ Zr

where Cdi is the cyclic group of order di and r=# zeros on the diagonal of the smith normal

form

ALTERNATE FORM: If G is a finitely generated abelian group, then there exists unique

r ≥ 0 and q1, ..., qn which are powers of (not necessarily distinct) prime numbers and G =

Cq1 ⊕ ...⊕ Cqn ⊕ Zr

25 (p-group + Theorem + Corollary + Proposition) A group is called a p-group if

the order of every element is finite and is a power of p, where p is prime.

Theorem: If p divides |G|, then there exists an element g of order p

Corollary: A finite group G is a p-group if and only if |G| = pk for some k

Proposition: the center of a finite p-group is non-trivial

26 (1st Sylow Theorem) Suppose that pk divides |G|. Then G contains a subgroup of

order pk

27 (Sylow p-subgroups) If pk is the highest order of prime dividing |G|, then a subgroup

of order pk is called a Sylow p-subgroup

28 (2nd Sylow Theorem) Let P be a p-subgroup of G and let H be a Sylow p-subgroup.

Then there exists some g ∈ G such that g−1Pg < H.

In particular, all Sylow subgroups are conjugate to one another.

29 (3rd Sylow Theorem) The number of Sylow p-subgroups divides |G| and is congruent

to 1 mod p
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30 (groups of each order) 1: e

2: Z2 = C2

3: C3

4: C2 × C2, C4

5: C5

6: C6 = C2 × C3, S3 = D3

7: C7

8: C8, C2 × C2 × C2, C2 × C4, Q, D4

2 Rings

31 (ring) A ring R is a set with two binary operators: + and · s.t.

1. (R,+) is an abelian group

2. a(b+ c) = ab+ ac

3. a(bc) = (ab)c

Also, may want it to have an identity or to be commutative

ex. R,C,Mn(R), C(X),Z[G]

32 ((left) zero divisor + left invertible) a is a left zero divisor if there exists some

b 6= 0 such that ab = 0 (similar for right)

a is a zero divisor if it is simultaneously a left and right zero divisor

ex. Z/nZ where n is not prime has zero divisors

ex. In Mn(R), the zero divisors are the matrices which are not divisible

If R has identity, a is left invertible if there exists some b such that ba = 1.

33 (integral domain + division ring + field + homomorphism) A commutative

ring with 0 6= 1 is called an integral domain if it has no zero divisors

If every non-zero element is invertible, then it is called a division ring

A commutative division ring is called a field
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A homomorphism if a map f between rings R1 and R2 such that f(a + b) = f(a) + f(b),

f(ab) = f(a)f(b)

34 ((left) ideal) A left ideal of R is a non-empty subset I which is a subgroup of the

additive group such that ra ∈ I whenever r ∈ R, a ∈ I

Note: an ideal is a subring (without identity)

The trivial ideals are {0} and R

The smallest left ideal containing a1, a2, ..., an is {x1a1 +x2a2 + ...+xnan +k1a1 + ...+knan :

xi ∈ R, ki ∈ Z}

The smallest (two-sided) ideal is much more complicated: {x11a1y11 + a12a1y12 + ... +

xnmanynm}

If R is a ring and I a (two-sided) ideal then R/I is an additive group

35 (principal ideal + principal ring + PID) An ideal is called principal if it is

generated by one element.

A ring is called a principal ring if all its ideals are principal.

A principal ideal domain (PID) is a domain in which all ideals are principal.

Recall: integral domain is commutative + no zero divisors

36 (Theorems about ideals) Theorem 1: If f : R1 → R2 is a homomorphism, then

f(R1) = R1/ ker f , f(r) from r + ker f

Theorem 2: If I, J are two ideals, then I/(I ∩ J) = (I + J)/J

Theorem 3: If I ⊂ J are two ideals then R/J = (R/I)/(J/I)

ex. if R = Z and (n) is the ideal generated by n, then

(n) + (m) = (gcd(n,m)), (n) ∩ (m) = (lcm(n,m))

37 (prime ideal) An ideal P 6= R is said to be prime if it cannot be written as the product

of two ideals

i.e. for all ideals A,B if AB ⊆ P then A ⊆ P or B ⊆ P

Theorem: P is prime if and only if for every a, b ∈ R if ab ∈ P then a ∈ P or b ∈ P

Theorem: If R is commutative with identity then an ideal P is prime if and only if R/P is

an integral domain

38 (maximal) An ideal I is called maximal if I 6= R and for every ideal J such that I ⊆ J

either I = J or J = R
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ex. In Z, (n) subset of (m) IFF m divides n

Theorem: Let R be a ring with identity. Then every proper ideal is contained in a maximal

ideal.

Theorem: Let R be a commutative ring with identity. Then every maximal ideal is prime.

Theorem: Let R be a commutative ring with identity. Then an ideal I is maximal if and

only if R/I is a field.

39 (Theorem (direct product, ideals) + Corollary + Corollary) Theorem: If R

is a ring and A1, ..., An are ideals and

1. A1 + A2 + ...+ An = R

2. Ai ∩ (A1 + ...+ Ai−1 + Ai+1 + ...+ An) = 0

Then R = A1 × ...× An

Corollary 1: Under the same conditions, R/(A1 ∩ ... ∩ An) ∼= R/A1 × ...×R/An

Corollary 2: If n = pk11 ...p
ks
s for pairwise different primes pi then Z/nZ = Z/pk11 Z × ... ×

Z/pkss Z

40 (divides) For a commutative ring R, a|b if there exists an x such that b = ax

We get an equivalence relation: a ∼ b if and only if a|b and b|a. So a = b times a unit.

Proposition: a|b if and only if (a) contains (b)

Corollary: a ∼ b if and only if (a) = (b)

Proposition: u is a unit (ie. an invertible element) if and only if (u) = R

41 (irreducible + prime) A non-unit element a is irreducible if whenever b|a either b is

a unit or b ∼ a (the latter, if R is a domain means b = au for a unit u)

If R is a domain, this can be reformulated as: if whenever a = a1a2 either a1 or a2 is a unit.

Proposition: a is irreducible iff (a) is maximal among proper principal ideals

A non-unit element a is prime if a|b1b2 implies a|b1 or a|b2

Theorem: In a PID, every irreducible element is prime.

42 (Chinese Remainder Theorem) A1, ..., Ak are ideals in R with identity such that

Ai + Aj = R for i 6= j

If b1, ..., bn ∈ R then ∃b ∈ R s.t. b− bi ∈ Ai. Moreover, b is unique modulo A1∩A2∩ ...∩An
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43 (UFD, Noetherian) A domain R is a unique factorization domain (UFD) if every

non-zero element can be written as a product p1p2 . . . pn of irreducible elements in a unique

way up to permutation of elements and units. Such a decomposition always exists.

A ring R is Noetherian if it does not have an infinite strictly increasing chain of ideals. Note

that every element of a Noetherian domain can be decomposed into a product of irreducible

elements.

44 (Euclidean) A commutative ring R is Euclidean if there exists a map ϕ : R\{0} → N
such that

• a, b ∈ R and ab 6= 0 then ϕ(a) ≤ ϕ(ab)

• ∀a, d ∈ R with d 6= 0 then ∃q, r ∈ R such that a = dq + r and either r = 0 or

ϕ(r) < ϕ(q)

ex. Z with ϕ(n) = |n|, Z[
√

2] with ϕ(a+ b
√

2) = a2 − 2b2

Proposition: Every Euclidean ring is PID

45 (ring of quotients, RS−1) Let R be a commutative ring, 0 /∈ S ⊆ R a multiplicative

set. Define a/b for a ∈ R, b ∈ S as the equivalence class of the pair (a, b) with the relation

(a1, b1) ∼ (a2, b2) if there exists some s ∈ S such that sa1b2 = sb1a2.

Then the ring of quotients RS−1 is the set {a/b | a ∈ R, b ∈ S} with operations a1
b1

+ a2
b2

=
a1b2+a2b1

b1b2
and a1

b1
· a2
b2

= a1a2
b1b2

.

If R is a domain and we take S = R\{0} then RS−1 is called the quotient field of R.

If R is a domain, then the map ϕs : R → RS−1 defined via r 7→ rs
s

is well-defined, and a

monomorphism.

Let P be a prime ideal of R. Take S = R\P (this is multiplicative since P is prime). Then

S−1R is called the localization of R at P .

46 (S−1R) Theorem: Suppose T is commutative with identity, ψ : R → T is a

homomorphism such that ψ(s) is a unit in T for all s ∈ S. Then there exists a unique

f : RS−1 → T making the following diagram commutative

R T

RS−1

ψ

ϕ f
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Corollary: Let R be a domain. Then for any monomorphism ψ from R to a field K, there

exists a unique homomorphism f from the field of quotients of R to K.

47 (local) A commutative ring with identity is local if it has a unique maximal ideal.

Equivalently, a commutative ring with identity is local if the set of non-invertible elements

is an ideal.

48 (polynomials over R) R[x] = {r0 + r1x + · · · + rnx
n | ri ∈ R}, where multiplication

and addition are defined in the obvious way. We let n = deg(r0 + r1x+ · · ·+ rnx
n).

1. deg(fg) ≤ deg(f) + deg(g)

If R has no zero divisors and f 6= 0 6= g then deg(fg) = deg(f) + deg(g)

2. deg(f + g) ≤ max(deg(f), deg(g))

If deg(f) 6= deg(g) then deg(f + g) = max(deg(f), deg(g))

3. If the leading coefficient of g(x) is a unit, then for every f(x) ∈ R[x], there are unique

q(x), r(x) ∈ R[x] such that f = gq + r and either r = 0 or deg(r) < deg(g).

Theorem: Let R, S be commutative rings with identity, and let ϕ : R → S be a ho-

momorphism such that ϕ(1R) = 1S. Then for any s1, s2, . . . , sn ∈ S there exists a unique

homomorphism ϕ : R[x1, . . . , xn]→ S such that ϕ|R = ϕ and ϕ(xi) = si.

49 (ring of formal power series) We can define a ring with infinitely many variables,

and it is still a ring. We call it the ring of formal power series, denoted R[[x]].

Proposition: r0 + r1x + r2x
2 + . . . is a unit in the formal power series ⇔ a0 is a unit in

R.

50 (Bezout) Bezout’s Theorem: The remainder of division of f(x) by x− c is f(c).

In particular, (x− c)|f(x)⇔ f(c) = 0.

Proposition: If c1, c2, . . . , cn are pairwise different roots of f(x) and R has no zero divisors,

then (x− c1) . . . (x− cn)|f(x). In particular, n ≤ deg(f).

Proposition: c ∈ R is a multiple root of f(x) if and only if f(c) = 0 = f ′(c).

51 (content) If f = a0 + a1x + · · · + anx
n then C(f) = gcd(a0, a1, . . . , an) is called the

content.

Lemma: If D is a UFD then C(fg) = C(f)C(g) up to a unit.

We say f ∈ D[x] is primitive if C(f) = 1.
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52 (Eisenstein’s Criterion) Suppose f(x) ∈ Z[x] is primative, and f(x) = a0 + a1x +

a2x
2 + · · · + anx

n, deg(f) ≥ 1 and for some prime p, p does not divide an, but p|ak for

k = 0, 1, . . . , n− 1 but p2 does not divide a0, then f(x) is irreducible

Corollary: Suppose f = anx
n + · · ·+ a1x+ a0. If there exists a prime p such that p does

not divide an, if f is irreducible modulo p then f is irreducible over Z (hence also Q)

53 (Irreducibility over Z) Suppose f ∈ Z[x]. Then f irreducible in Z[x] iff irr. in Q[x]

3 Category Theory

54 (category, morphism, isomorphism) A category is a class C of objects together

with morphisms such that for each pair (A,B) of objects in C, there exists a set hom(A,B)

with the property that if (A,B) 6= (A′, B′) then hom(A,B) ∩ hom(A′, B′) = ∅.

If f ∈ hom(A,B) then we write f : A→ B.

Morphisms can be composed: for any triple (A,B,C) of objects in C, there is a function

homC(B,C)× homC(A,B)→ homC(A,C)

(g, f) 7→ g ◦ f

which satisfy

1. associativity

if f : A→ B, g : B → C, h : C → D then h ◦ (g ◦ f) = (h ◦ g) ◦ f

2. identity

for every object B of C, there exists a morphism 1B : B → B so that for any f : A→ B

or g : B → C, 1B ◦ f = f and g ◦ 1B = g.

A morphism f : A→ B in C is called an isomorphism if there exists a morphism g : B → A

in C so that f ◦ g = idB and g ◦ f = idA.

55 (covariant / contravariant functor) Let A and B be categories. A covariant functor

F : A → B is an assignment such that

1. ∀A ∈ Ob(A) we have F (A) ∈ Ob(B)

2. ∀f : A→ A′ in Mor(A), we have F (f) : F (A)→ F (A′) in Mor(B)
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It must satisfy

(a) F (idA) = idF (A) for all A ∈ Ob(A)

(b) F (g ◦ f) = F (g) ◦ F (f) for all morphisms f : A→ B and g : B → C in Mor(A)

We call such a functor a contravariant functor if requirement 2. is changed to: ∀f : A→ A′

in Mor(A), we have F (f) : F (A′)→ F (A) in Mor(B)

4 Modules

56 (module) Let R be a ring (with identity). We say M is a left R-module if

1. M is an abelian group (wrt addition)

2. there exists scalar multiplication by R on M

· : R×M →M

(r,m) 7→ r ·m =: rm

satisfying

(a) (r1 + r2)m = r1m+ r2m

(b) (r1r2)m = r1(r2m)

(c) 1Rm = m

(d) r(m1 +m2) = rm1 + rm2

ex. Abelian groups ↔ Z-modules

Let RM be the category of left R-modules.

57 (quotient modules) Given N ⊆ M as R-modules and as groups N CM . We can

then form the quotient group M/N = {m + N | m ∈ M} has an induced structure of an

R-module: r(m+N) := rm+N .

58 (R-module homomorphism) Given R-modules M and M ′, a function f : M → M ′

is an R-module homomorphism if

f(m1 +m2) = f(m1) + f(m2) f(r ·m) = r · f(m).

14



Theorem: TFAE:

1. f : M →M ′ is an isomorphism

2. f is invertible wrt composition

i.e. there exists an R-module homomorphism g : M ′ → M such that g ◦ f = idM and

f ◦ g = idM ′

3. f is an isomorphism of abelian groups

4. f is one-to-one and onto

59 (First Isomorphism Theorem) Given f : M → M ′ an R-module homomorphism,

the function

f : M/ ker(f)→ f(M)

m+ ker(f) 7→ f(m)

is an isomorphism of R-modules

60 (direct product, (external/internal) direct sum) Given R-modules Mi,

Πi∈IMi = {(mi)i∈I}

is called the direct product. This is an R-module where scalar multiplication is entrywise:

r · (mi)i∈I = (r ·mi)i∈I .

Define the (external) direct sum to be

⊕
i∈I

Mi = {(mi)i∈I ∈ Πi∈IMi | for all but finitely many i ∈ I,mi = 0}

This is an R-submodule of the direct product.

Suppose Mi ⊆M are R-submodules of M . Then define the internal sum to be

∑
i∈I

Mi =

{∑
i∈I

mi | mi ∈Mi,mi = 0 for almost all i

}
.

If Mi ⊆M , we have an R-module homomorphism
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φ :
⊕
i∈I

Mi →
∑
i∈I

Mi ⊆M

(mi)i∈I 7→
∑
i∈I

mi

This is always surjective.

61 ((short) exact sequenes) Given R-module homomorphisms f : N → M and g :

M → P , we call the diagram

N
f→M

g→ P

a sequence of R-module homomorphisms. We say the sequence is exact at M if Im f = ker g.

Proposition: The sequence 0→ N
f→M is exact IFF f is injective.

Proposition: The sequence M
g→ P → 0 is exact IFF g is surjective.

An exact sequence of the form

0→ N
f→M

g→ P → 0

is called a short exact sequence (so f is injective, g is surjective, Im(f) = ker(g).

62 (Hom-Groups) Fix a ring R and let A,B be left R-modules. Let

HomR(A,B) = {f : A→ B | f is an R-module homomorphism}

This is an abelian group under addition of functions.

Proposition: IfR is commmutative, then HomR(A,B) is anR-module by setting (rf)(a) =

r · f(a) = f(ra).

Suppose ϕ : A → B is a fixed R-module homomorphism and let f ∈ HomR(M,A). Then

define ϕ∗(f) = ϕ ◦ f ∈ HomR(M,B). So the assignment ϕ∗ : HomR(M,A)→ HomR(M,B)

is a group homomorphism.

For M an R-module, we have a functor
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HomR(M,−) :RM→ Ab

A 7→ HomR(M,A)(
A

ϕ−→ B
)
7→
(

HomR(M,A)
ϕ∗−→ HomR(M,B)

)
Proposition: For a fixed M , HomR(M,−) is a covariant additive functor. It is also a left

exact covariant functor.

Proposition: For a fixed R-module N , HomR(−, N) is a left exact contravariant functor.

Theorem: For a ring R and a free R-module F , the functor HomR(F,−) :R M→ Ab is

exact.

63 (additive functor / exact) Let R and S be rings. Then F :RM→S M is additive

if for all A,B ∈RM the induced map

FAB : HomR(A,B)→ HomR(F (A), F (B))(
A

f→ B
)
7→
(
F (A)

F (f)→ F (B)
)

is a group homomorphism.

An additive covariant functor F :R M →S M is exact if for any R-modules A,B,C if

0 → A
f→ B

g→ C → 0 is an exact sequence of R-modules, then 0 → F (A)
F (f)→ F (B)

F (g)→
F (C)→ 0 is an exact sequence of S-modules.

64 (left / right exact) We say F :R M →S M is left exact if we have a short exact

sequence of R-modules 0→ A→ B → C → 0, then 0→ F (A)→ F (B)→ F (C) is an exact

sequence of S-modules.

Similar for right exact.

65 (generating sets) Let R be a ring, M an R-module, and S ⊆ M be a subset. Then

we define the sub-R-module of M generated by S, to be

{
r1x1 + · · ·+ rnxn | ri ∈ R, xi ∈ S, n ≥ 1

}
=
∑
x∈S

Rx = (x : x ∈ S)R

We say M is finitely generated over R if there exists a finite set {x1, . . . , xn} ⊆ M so that

M = Rx1 + · · ·+Rxm = (x1, . . . , xm)R.

A set S is linearly independent over R if whenever r1x1 + · · · + rmxm = 0 with ri ∈ R,
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xi ∈ S ⊆M , we must have rk = 0. Otherwise, S is linearly dependent over R.

If B ⊆M is linearly independent over R and B generates M over R, then we call B a basis

of M as an R-module.

An R-module M that has a basis is called a free R-module.

Proposition: If M is free with B ⊆M then

f :
⊕
x∈B

R→M

(rx)x∈B 7→
∑
x∈B

rx · x ∈M

is an isomorphism of R-modules IFF B is a basis.

Corollary: An R-module M is free IFF M ∼= ⊕i∈IR as an R-module.

Theorem: Let R be a PID, let F be a free R-module. If M ⊆ F is a submodule then M

is free and rankR(M) ≤ rankR(F ).

66 (torsion) For an R-module M , we say x ∈ M is torsion of there exists some r ∈ R,

r 6= 0 such that r · x = 0.

Take Mtor = {m ∈M | m is R-torsion}. This is a submodule of M .

We say M is torsion-free as an R-module if Mtor = {0}.

67 (Splitting Lemma) Let 0→ N1
f→M

g→ N2 → 0 be an exact sequence of R-modules.

TFAE:

1. there exists an R-module homomorphism ψ : N2 →M such that g ◦ ψ = idN2

2. there exists an R-module homomorphism ϕ : M → N1 such that ϕ ◦ f = idN1

If these conditions are satisfies, then

M = Im(f)⊕ ker(ϕ) = ker(g)⊕ Im(ψ) ∼= N1 ⊕N2.

In this case, we say that the exact sequence is split and that ϕ and ψ are splittings.

Proposition 1: Let F be a free R-module. Any short exact sequence of R-modules of the

form 0→ A
f→ B

g→ F → 0 is split.
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68 (Projective) An R-module P is projective if whenever f : P → C is an R-module

homomorphism and g : B → C is a surjective R-module homomorphism, then there exists

an R-module homomorphism h : P → B such that g ◦ h = f .

P

B C 0
g

f
h

Theorem: Let R be a ring and P an R-module. TFAE:

1. P is projective

2. Every exact sequence 0→ A→ B → P → 0 of R-modules splits

3. There is an R-module M such that M ⊕ P is free

4. The functor HomR(P,−) :RM→ Ab is exact

Corollary: Free modules are projective modules

69 (injective) An R-module I is injective if whenever f : A → I is an R-module ho-

momorphism and g : A→ B is an injective R-module homomorphism, then there exists an

R-module homomorphism h : B → I such that h ◦ g = f .

I

0 A B
g

f
h

Theorem: Let R be a ring and I an R-module. TFAE:

1. I is injective

2. Every exact sequence 0→ I → B → C → 0 of R-modules splits

3. If I ⊆ B as a submodule, then there exists a submodule C ⊆ B such that B ∼= I ⊕C.

4. The functor HomR(−, I) :RM→ Ab is exact
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70 (divisible abelian group) D is a divisible abelian group if ∀n ∈ Z n 6= 0 the

homomorphism

[n] : D → D

x 7→ nx

is surjective.

Proposition: Let D be an abelian group. Then D is divisible ⇔ D is an injective Z-

module.

5 Tensor Products

71 (M ⊗RN) Let R be a ring, M a right R-module, N a left R-module. Then M ⊗RN is

an abelian group together with an R-biadditive map h : M ×N →M ⊗R N which satisfies:

For all abelian groups A and R-biadditive maps f : M ×N → A there exists a unique group

homomorphism f̃ : M ⊗R N → A such that f = f̃ ◦ h

M ×N M ⊗R N

A

h

f f̃

Theorem: Let R be a ring, M a left R-module, N a right R-module. Then M ⊗RN exists

and is unique up to unique isomorphism.

That is, if there exists another possible group (M ⊗RN)′ then the isomorphism between the

two groups is unique.

An element of M ⊗R N looks like
∑n

i=1mi ⊗ ni where mi ∈ M , ni ∈ N . We say m⊗ n is a

pure tensor in M ⊗R N . For any m ∈M and n ∈ N , m⊗ 0 = 0⊗ n = 0.

Note: If R is commutative and M and N are R-modules, then M ⊗R N is an R-module

with r · (m⊗ n) = mr ⊗ n = m⊗ rn.

72 (tensor product examples) ex 1. If T is a torsion abelian group (i.e. every element

of T has finite order) then Q⊗Z T = {0}

ex 2. If D is a divisible abelian group and T is a torsion abelian group then D⊗Z T = {0}.
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ex 3. (Z/mZ)⊗Z (Z/nZ) = Z/tZ where t = gcd(m,n)

Ex 4. For a general R and left R-module N , R ⊗R N ∼= N (isomorphic as R-modules).

Similarly, M ⊗R R ∼= M .

Proposition: Given (S,R)-bimodule M and a left R-module N , then the tensor product

M ⊗R N is also a left S-module with s(m⊗ n) = (sm)⊗ n.

Proposition: Let R be a commutative ring. Then Rm ⊗R Rn ∼= Rmn as left R-modules.

Proposition:
(⊕

i∈IMi

)
⊗R N ∼=

⊕
i∈IMi ⊗R N .

73 (FM :RM→ Ab) Given a right R-module M , there is a covariant additive functor

FM :RM→ Ab

such that

FM(N) = M ⊗R N FM(φ) = idM ⊗φ

where φ : N → N ′ is a homomorphism of left R-modules.

Theorem: Given

f : M →M ′ right R-modules

g : N → N ′ left R-modules

Then there exists a unique homomorphism of abelain groups

f ⊗ g : M ⊗R N →M ′ ⊗R N ′

such that (f ⊗ g)(m ⊗ n) = f(m) ⊗ g(n). If R is commutative, then f ⊗ g is an R-module

homomorphism.

Corollary: If f1 : M ′ →M ′′ and g1 : N ′ → N ′′ then (f1⊗ g1) ◦ (f ⊗ g) = (f1 ◦ f)⊗ (g1 ◦ g).

Corollary: If f, g are isomorphisms, then f ⊗ g is an isomorphism.

74 ((S,R)-bimodule) Let R and S be rings and let M be an abelian group. Then M is

(S,R)-bimodule (denoted SMR) if M is a left S-module and a right R-module and if

s(mr) = (sm)r ∀s ∈ S, r ∈ R,m ∈M
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6 Invariant Dimension Property

75 (invariant dimension property) A ring R has the invariant dimension property if

for any free R-module F , any two bases of F have the same cardinality.

Theorem: If R is commutative, then R satisfies the invariant dimension property.

Proposition: There exists rings R such that ∃m 6= n with Rm ∼= Rn as left R-modules.

76 (flat) We say that M is flat if M ⊗R − is exact.

Proposition: Let R be a ring

1. As a (Z, R)-bimodule, R is a flat module

2. Let {Mi} be (S,R)-bimodules. Then ⊕iMi is flat ⇔ each Mi is flat

3. If M is an (S,R)-bimodule and is projective as a right R-module then M is flat

77 (Noetherian) Let R be a ring and M be a left R-module. We say M is Noetherian if

it satisfies one of the following equivalent conditions:

1. every submodule of M is finitely generated

2. ascending chain condition

i.e. every ascending sequence M1 ⊆ M2 ⊆ M3 ⊆ . . . of submodules of M stabilizes

(that is, there exists some N such that ∀n ≥ N , Mn = MN)

3. every non-empty subset of submodules of M contains a maximal element with respect

to inclusion

A ring R is a Noetherian ring if it is Noetherian as a left R-module

Proposition: Let 0 → M ′ f→ M
g→ M ′′ → 0 be an exact sequence of left R-modules.

Then M is Noetherian ⇔ M ′ and M ′′ are Noetherian.

Corollary: In particular, submodules, quotient modules, and direct sums of Noetherian

modules are Noetherian.

Proposition: Let R be a Noetherian ring. Then every finitely generated left R-module is

Noetherian.

78 (Hilbert’s Basis Theorem: ) If R is a commutative Noetherian ring, then R[x] is

Noetherian.
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7 Modules over a PID

79 (torsion-free) Let R be a PID, M an R-module, Mtors = {m ∈ M | ∃0 6= a ∈
R such that am = 0} ⊆M is a submodule. If Mtors = {0} then M is torsion-free.

Lemma: M/Mtors is always torsion-free.

Theorem 1: Over a PID, torsion free and finitely generated⇒ free and finitely generated.

Theorem 2: Let R be a PID and M a finitely generated R-module. Then

1. M/Mtors is free and finitely generated

2. ∃F ⊆M submodule that is free and finitely generated so that M = Mtors ⊕ F

3. rankR(F ) = rankR(M/Mtors) <∞

We say M is torsion if Mtors = M .

80 (Elementary Divisors Theorem) Let R be a PID. Let F be a free finitely generated

R-module. Let 0 6= E ⊆ F be a submodule. Then there exists a basis z1, . . . , zn of F and

elements λ1, . . . , λt of R (1 ≤ t ≤ n) such that

1. λ1|λ2 and λ2|λ3 and etc... λi 6= 0

2. λ1z1, . . . , λtzt is a basis for E

3. F/E ∼= R/(λ1R)⊕R/(λ2R)⊕ · · · ⊕R/(λtR)⊕R⊕ · · · ⊕R︸ ︷︷ ︸
r=n−t times

Moreover, λ1, . . . , λt are unique up to units in Rx and r is uniquely determined by F/E.

0→ Ei⇒F →M → 0 n = rankR(F ), t = rankR(E), r = n− t

where E is free + finitely generated, F is free + finitely generated, M is finitely generated.

81 (K[x]) Let K be a field. Then K[x] is the polynomial ring in x with coefficients in K.

We know that K[x] is a PID, UFD and a Euclidean Domain.

For f, g ∈ K[x], then deg(fg) ≤ deg(f) + deg(g), and deg(f + g) ≤ max{deg(f), deg(g)}.

Division algorithm: Let f, g ∈ K[x] with deg(f), deg(g) ≥ 0. Then there exists unique

polynomials q, r ∈ K[x] so that f = gq + r and deg(r) < deg(g).

Corollary: Let f ∈ K[x], deg(f) = n ≥ 0. Then
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1. f has at most n roots in K

2. If c ∈ K is a root of f then (x− c) divides f in K[x].

82 (extension) If K ⊆ L are fields, we say that L is an extension of K and write L/K is

an extension of fields.

Given fields L/K and α ∈ L, we say that α is algebraic over K if there exists some non-zero

polynomial f ∈ K[x] with f(α) = 0. Otherwise, α is transcendental over K.

If every α ∈ L is algebraic over K then we say L/K is an algebraic extension.

Given an extension L/K of fields, L is a K-vector space. We set [L : K] = dimK(L) to be

the degree of L over K. If [L : K] = n < ∞ then L/K is a finite extension, otherwise, it’s

an infinite extension.

Given α1, . . . , αm ∈ L, then K(α1, . . . , αm) is the smallest subfield of L containing K and

α1, . . . , αm.

Lemma: Let L/K be a field extension and let α ∈ L. Define a ring homomorphism

ρ : K[x]→ L

f 7→ f(α)

Then

1. α is algebraic over K ⇔ ker(ρ) 6= {0}
α is transcendental over K ⇔ ker(ρ) = {0}

2. If α is algebraic over K then Im(ρ) = K(α) is the smallest subfield of L containing K

and α

If α is transendental over K, then Im(ρ) = K[α] and is isomorphic to a polynomial

ring over K

83 (quotient by function) Let K be a field and 0 6= f ∈ K[x]. Then K[x]/(f) is a

K-vector space (since it’s a K-module) and dimK(K[x]/(f)) = deg f . And

K[x]/(f) ∼= {c0 + c1x+ · · ·+ cd−1x
d−1( mod f) | ci ∈ K}

84 (irreducible polynomial of an algebraic element) Given L/K a field extension

and α ∈ L algebraic over K,

24



ρ : K[x]→ L

g 7→ g(α)

is a K-algebra homomorphism (a homomorphism of rings that’s also a linear transformation)

and Im(ρ) = K(α).

We define Irr(α,K, x) to be the unique monic polynomial in K[x] of least degree having α

as a root.

Proposition: Let L/K be fields and let α ∈ L be algebraic over K. Let ϕ = Irr(α,K, x).

ThenK(α) ∼= K[x]/(ϕ). Moreover, [K(α) : K] = dimK(K(α)) = deg(ϕ) = deg(Irr(α,K, x)).

Corollary: If α ∈ L is algebraic overK then [K(α) : K] <∞. Moreover, {1, α, α2, . . . , αd−1}
where d = deg(Irr(α,K, x)) is a K-basis for K(α).

Proposition: Let L/K be a finite extension. Then L/K is algebraic.

Proposition: Let H ⊆ K ⊆ L be fields. Then [L : H] = [L : K][K : H].

Even stronger, if {xi}i∈I is a basis for L/K and if {yj}j∈J is a basis for K/H then {xiyj}i∈I,j∈J
is a basis for L/H.

85 (compositum of fields) Let K,L be extensions of some field. If K and L are both

subfields of some other field F then we define the compositum of K and L, KL, to be the

smallest subfield of F that contains both K and L.

86 (prime field) Given a field K, there exists a unique ring homomorphism

ψ : Z→ K

1 7→ 1

2 7→ 1 + 1

Then ker(ψ) is an ideal in Z, so kerψ = (0) or (p) for some prime p. If ker(ψ) = (0) then

K contains a copy of Q, so K has characteristic 0 and Q is the prime field of K since Q is

contained in every subfield of K. If kerψ = (p) then K has characteristic p and Fp := Z/pZ
is the prime field of K
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8 Distinguished Classes of Fields

87 (Great Theorem) Let K/L be a field extension. We say that K is finitely generated

over L if K = L(α1, . . . , αn) for some α1, . . . , αn ∈ K.

Proposition: Suppose all fields below are contained in the same larger field

1. Let F ⊆ K ⊆ L be fields.

Then L/F is finite ⇔ L/K is finite and K/F is finite

2. Suppose K/F is finite and L/F is any extension. Then KL/L is finite

3. If K/F and L/F are finite, then KL/F is finite

4. Let F ⊆ K ⊆ L be fields.

Then L/F is algebraic ⇔ L/K is algebraic and K/F is algebraic

5. Suppose K/F is algebraic and L/F is any extension. Then KL/L is algebraic

6. If K/F and L/F are algebraic, then KL/F is algebraic

88 (algebraically closed) A field F is algebraically closed if every polynomial in F [x]

has a root in F .

ex. C is algebraically closed.

ex. Q = {α ∈ C | α is algebraic over Q} = field of algebraic numbers. This is the smallest

algebraically closed field in C containing Q.

Theorem: Let K be a field. Then there is an algebraically closed field K which is also

algebraic over K.

Proposition: Suppose K ⊆ F ⊆ E, where E is algebraically closed. Then K ⊆ F .

Moreover, K = F if and only if F is algebraic over K.

89 (embeddings) Let L and K be fields. A ring homomorphism σ : K ↪→ L, 1 7→ 1 is

called an embedding.

Suppose E/K is an extension of fields. An embedding τ : E ↪→ L extends σ if τ |K = σ

E

K L

L

σ

τ
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Special Case: If K ⊆ L and σ : K ↪→ L is the inclusion map, then τ is called an embedding

of E over K

E

K L

L

idK

τ

Key Fact: Suppose K ⊆ E ⊂ L are fields and say f ∈ K[x] has a root α ∈ E. Then for any

embedding τ : E ↪→ L over K (i.e. embedding that fixes K), the element τ(α) ∈ τ(E) ⊆ L

is also a root of f .

Fix an embedding σ : K ↪→ L where K is a field and L is algebraically closed. Suppose E/K

is algebraic. Define Emb(E/K, σ) = {τ : E ↪→ L | τ |K = σ}.

If K ⊆ L is a subfield, idK : K ↪→ L inclusion, then Emb(E/K) = {τ : E ↪→ L | τ |K =

idK} = Emb(E/K, idK}.

If σ : K ↪→ L, let Kσ = σ(K). For f(x) ∈ K[x], we take fσ(x) to be σ(am)xm + · · · =

σ(a1)x+ σ(a0). Then φ : K[x]→ L[x], f 7→ fσ is a ring homomorphism.

9 Splitting Field of a Polynomial

90 (splitting field of f) Let K be a field and let K/K be an algebraic closure of K.

For a polynomial f ∈ K[x], write f = c(x − α1) . . . (x − αn) for c ∈ Kx, αi ∈ K. The field

E = K(α1, . . . , αn) is called the splitting field of f over K.

Theorem: Let E be a splitting field of f ∈ K[x].

1. If F is another splitting field (say in some other algebraically closed field containing

K), then there exists an isomorphism σ : F → E such that σ|K = idK

2. If K ⊆ E ⊆ K, then any embedding σ : E ↪→ K over K must have image E (i.e.

σ(E) = E).

Proposition: Let F be a field and suppose f(x) ∈ F [x]. Then f(x) has no repeated roots

if and only if gcd(f(x), f ′(x)) = 1.
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10 Embeddings

91 (nada!)

92 (Lifting Lemma) Let K be a field, σ : K ↪→ L embedding, L algebraically closed.

Suppose E/K is algebraic. Then there exists an embedding τ : E ↪→ L extending σ.

Corollary: Let K be a field. Then any two algebraic closures of K are isomorphic over K.

ex. Consider

Q( 4
√

2, i)

Q( 4
√

2)

Q C

C

C

idQ

τ

ρ

The options for τ are sending 4
√

2 to one of 4
√

2,− 4
√

2, i 4
√

2,−i 4
√

2.. What ρ is depends on the

choice of τ . Let ρ send 4
√

2 to τ( 4
√

2) and then it may send i to either i or −i.

11 Splitting Fields

93 (freebee)

94 (normal extensions) We say E/K is a normal extension if it satisfies any of the

following equivalent conditions

1. every embedding σ : E ↪→ K over K induces an automorphism of E (i.e. σ(E) = E)

2. E is the splitting field over K of some set of polynomials in K[x]

3. every irreducible polynomial of K[x] which has a root in E must split in E (i.e. all its

roots are in E)

Theorem: Suppose E/K is normal.

1. If H/K is any extension, then EH/H is normal

2. If E ⊇ F ⊇ K are fields, then E/F is normal (note: F/K need not be normal)

3. If E ′/K is also normal, then EE ′/K is normal
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4. If F/K is algebraic, then there exists a normal extension E/K such that F ⊆ E.

95 (separable extensions) Let σ : K ↪→ L, where L is algebraically closed. If E/K is

algebraic, we set the separable degree of E/K to be [E : K]s = # Emb(E/K, σ).

Lemma: If K is a field and σ : K ↪→ L an embedding, L algebraically closed and E/K is

algebraic, then # Emb(E/K, σ) is independent of σ and L.

Theorem: If E ⊇ F ⊇ K is a tower of algebraic extensions, then [E : K]s = [E : F ]s[F :

K]s. If E/K is finite, then [E : K]s ≤ [E : K].

If E/K is finite and [E : K]s = [E : K] then E/K is called a separable extension.

An element α ∈ E is separable overK ifK(α)/K is separable (i.e. [K(α) : K]s = [K(α) : K])

Lemma: K(α)/K is separable⇔ Irr(α,K, x) has no repeated roots inK⇔ gcd(f(x), f ′(x)) =

1 where f = Irr(α,K, x).

If every element of E is separable over K then we say E/K is a separable extension.

Theorem: The compositum of separable extensions is separable.

Proposition: Suppose char(K) = 0. Then every irreducible polynomial in K[x] is separa-

ble. In particular, every algebraic extension E/K is separable.

12 Inseparable Extensions

96 (inseparable) Suppose E/K is algebraic. Then TFAE:

1. E/K is inseparable

2. E/K is not separable

3. ∃α ∈ E that is not separable over K

4. ∃α ∈ E so that Irr(α,K, x) has repeated roots

Propostion: Let K be a field of characteristic p. Let α ∈ K and f = Irr(α,K, x) ∈ K[x].

Then there exists some µ ≥ 0 so that

1. every root of f in K has multiplicity pµ

2. [K(α) : K] = pµ[K(α) : K]s

3. αp
µ

is separable over K
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If µ ≥ 1 then α is inseparable over K and K(α)/K is inseparable.

Corollary:

1. For any finite extension E/K, [E : K]s|[E : K]

2. If char(K) = 0 then [E : K]s = [E : K]

3. If char(K) = p > 0 then [E : K]i = [E:K]
[E:K]s

is a power of p (called the inseparable degree

of E/K)

97 (perfect) A field K is perfect if every algebraic extension of K is separable.

Suppose char(K) = p > 0. Then the pth power Frobenus map is φ : K → K, x 7→ xp is a

field embedding.

Proposition: Let K be a field of characteristic p > 0. Then K is perfect ⇔ φ is an

automorphism

98 (Galois group) If E/K is normal and separable, we say E/K is a Galois extension.

If E/K is any extension, then

Aut(E/K) = {σ : E
∼→ E field automorphism | σ|K = idK}

If E/K is Galois, then we write Gal(E/K) = Aut(E/K).

If f ∈ K[x] is separable, then the Galois group of f over K is Gal(E/K) where E is the

splitting field of f over K.

Proposition 1: If E/K is finite and Galois, then Gal(E/K) = Emb(E/K) and |Gal(E/K)| =
[E : K]

Propositon 2: Suppose E/K is Galois and suppose K ⊆ F ⊆ E where F is a field. Then

E/F is Galois and Gal(E/F ) ≤ Gal(E/K)

Proposition 3: Let E/K be a finite, Galois group. If E = K(α) and f = Irr(α,K, x) ∈
K[x] then each element of Gal(E/K) permutes the roots of f which induces a homomorphism

Gal(E/K) ↪→ Sn where n = deg(f) = [E : K] = # Gal(E/K).

99 (positive element theorem) If E/K is finite and separable, then ∃α ∈ E so that

E = K(α).

100 (Fundamental Theorem of Galois Theory) Let E/K be an extension and H ⊆
Aut(E/K) a subgroup. Define EH := {α ∈ E | ∀σ ∈ H, σ(α) = α} to be the fixed field, so

K ⊆ EH ⊆ E.
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Let E/K be a finite Galois extension and let G = Gal(E/K). Then there is an inclusion

reversing bijection

intermediate fields ↔ subgroups of G

EH ← H

F 7→ Gal(E/F )

Given an intermediate field K ⊆ F ⊆ E, F/K is Galois ⇔ Gal(E/F ) C Gal(E/K). In this

case, the map Gal(E/K)→ Gal(E/K), σ 7→ σ|F yields

Gal(F/K) ∼=
Gal(E/K)

Gal(E/K)
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