Complex Methods: Example Sheet 1 Part IB, Lent Term 2016 Dr R. E. Hunt

Cauchy–Riemann equations

1. (i) Where, if anywhere, in the complex plane are the following functions differentiable, and where are they analytic?

Im z; $|z|^2$; sech z.

- (ii) Let $f(z) = z^5/|z|^4$, $z \neq 0$, f(0) = 0. Show that the real and imaginary parts of f satisfy the Cauchy–Riemann equations at z = 0, but that f is not differentiable at z = 0.
- **2.** Find, as functions of z, complex analytic functions f(z) whose real parts are the following:

(i)	x	(ii) xy	(iii) $\sin x \cosh y$
(iv)	$\log(x^2 + y^2)$	(v) $\frac{y}{(x+1)^2 + y^2}$	(vi) $\tan^{-1}\left(\frac{2xy}{x^2-y^2}\right)$

Deduce that the above functions are harmonic on appropriately-chosen domains, which you should specify.

- **3.** By considering w(z) = (i+z)/(i-z), show that $\phi(x,y) = \tan^{-1} \frac{2x}{x^2 + y^2 1}$ is harmonic.
- **4.** Verify that the function $\phi(x, y) = e^x(x \cos y y \sin y)$ is harmonic. Find its harmonic conjugate and, by considering $\nabla \phi$ or otherwise, determine the family of curves orthogonal to $\phi(x, y) = c$ for a given constant c.

Find an analytic function f(z) such that $\operatorname{Re} f = \phi$. Can the expression $f(z) = \phi(z, 0)$ be used to determine f(z) in general?

Branches of multi-valued functions

5. Show how the principal branch of $\log z$ can be used to define a branch of z^i which is single-valued on the domain $\mathscr{D} = \mathbb{C} \setminus \mathbb{R}^-$. Evaluate i^i for this branch.

Show, using polar coordinates, that the branch of z^i defined above maps \mathscr{D} onto an annulus which is covered infinitely often.

How would your answers change, if at all, for a different branch?

6. How many branch points does $f(z) = [z(z+1)]^{1/3}$ have? Draw some possible branch cuts in the complex plane and on the Riemann sphere.

Repeat for $f(z) = (z^2 + 1)^{1/2}$.

- * Repeat also for $f(z) = [z(z+1)(z+2)]^{1/3}$ and $f(z) = [z(z+1)(z+2)(z+3)]^{1/2}$.
- 7. Let $f(z) = (z^2 1)^{1/2}$, and consider two different branches of the function f(z):

$$f_1(z)$$
: branch cut [-1,1], $f_1(x) = +\sqrt{x^2 - 1}$ for real $x > 1$;

$$f_2(z)$$
: branch cut $(-\infty, -1] \cup [1, \infty)$, $f_2(x) = +i\sqrt{1-x^2}$ for real $x \in (-1, 1)$.

Find the limiting values of f_1 and f_2 above and below their respective branch cuts. Prove that f_1 is an odd function, i.e., $f_1(z) = -f_1(-z)$, and that f_2 is even.

Conformal mappings

8. How does the disc |z - 1| < 1 transform under the mapping $z \mapsto z^{-1}$? Use the identity

$$\frac{z}{(z-1)^2} = \left(\frac{1}{1-z} - \frac{1}{2}\right)^2 - \frac{1}{4}$$

to show that the map $f(z) = z/(z-1)^2$ is a one-to-one conformal mapping of the disc |z| < 1 onto the domain $\mathbb{C} \setminus \{x + iy : x \leq -\frac{1}{4}, y = 0\}$.

- **9.** Find conformal mappings f_i of \mathscr{U}_i onto \mathscr{V}_i for each of the following cases. If the mapping is a composition of several functions, provide a sketch for each step. \mathscr{D} denotes the unit disc $\{z : |z| < 1\}$.
 - (i) $\mathscr{U}_1 = \{ z : \operatorname{Re} z < 0, -1 < \operatorname{Im} z < 1 \}, \mathscr{V}_1 = \mathscr{D}.$
 - (ii) $\mathscr{U}_2 = \mathscr{D}, \mathscr{V}_2$ is the cut complex plane $\mathbb{C} \setminus \mathbb{R}^-$.
 - (iii) \mathscr{U}_3 is the angular sector $\{z : 0 < \arg z < \alpha\}$, $\mathscr{V}_3 = \{z : 0 < \operatorname{Im} z < 1\}$.
- * (iv) \mathscr{U}_4 is the open region bounded between two circles $\{z : |z| < 1, |z+i| > \sqrt{2}\}, \mathscr{V}_4 = \mathscr{D}.$

Laplace's equation

10. Show that

- $g(z) = e^z$ maps the strip $\mathscr{S} = \{z : 0 < \operatorname{Im} z < \pi\}$ onto the UHP $\{z : \operatorname{Im} z > 0\}$,
- $h(z) = \sin z$ maps the half-strip $\mathscr{H} = \{z : -\frac{\pi}{2} < \operatorname{Re} z < \frac{\pi}{2}, \ \operatorname{Im} z > 0\}$ onto the UHP.

Find a conformal map $f: \mathscr{H} \to \mathscr{S}$. Hence find a function $\phi(x, y)$ which is harmonic on the half-strip \mathscr{H} with the following limiting values on its boundary $\partial \mathscr{H}$:

$$\phi(x,y) = \begin{cases} 0 & \text{on } \partial \mathscr{H} \text{ in the LHP } (x < 0), \\ 1 & \text{on } \partial \mathscr{H} \text{ in the RHP } (x > 0). \end{cases}$$

Give ϕ as a function of *x* and *y*. Is there only one such function?

11. Using conformal mapping(s), find a solution to Laplace's equation in the upper half-plane $\{z : \text{Im } z > 0\}$ with boundary conditions

$$\phi(x,0) = \begin{cases} 1 & x \in [-1,1], \\ 0 & \text{otherwise.} \end{cases}$$

[Find a map f of the upper half-plane onto itself that makes the boundary conditions easier to deal with.]

Comments on or corrections to this problem sheet are very welcome and may be sent to reh10@cam.ac.uk.

Complex Methods: Example Sheet 2 Part IB, Lent Term 2016 Dr R. E. Hunt

Taylor and Laurent series

- **1.** Find the first two non-vanishing coefficients in the Taylor expansion about the origin of the following functions, assuming principal branches when there is a choice. You may make use of standard series expansions for $\log(1 + z)$, etc.
 - (i) $z/\log(1+z)$ (ii) $(\cos z)^{1/2} 1$ (iii) $\log(1+e^z)$ (iv) e^{e^z} .

State the range of values of z for which each series converges.

How would your answers differ if you assumed branches different from the principal branch?

- **2.** Let *a*, *b* be complex constants with 0 < |a| < |b|. Use partial fractions to find the Laurent expansions of $1/\{(z-a)(z-b)\}$ about z = 0 in each of the regions |z| < |a|, |a| < |z| < |b| and |z| > |b|.
- **3.** Find the first three terms of the Laurent expansion of $f(z) = \csc^2 z$ valid for $0 < |z| < \pi$.
- * Show that the function $h(z) = f(z) z^{-2} (z+\pi)^{-2} (z-\pi)^{-2}$ has only removable singularities in $|z| < 2\pi$. Explain how to remove them to obtain a function H(z) analytic in that region. Find a Taylor series for H(z) about the origin and explain why it must be convergent in $|z| < 2\pi$. Hence, or otherwise, find the three non-zero central terms of the Laurent expansion of f(z)valid for $\pi < |z| < 2\pi$.
- 4. Write down the location and type of each of the singularities of the following functions:

(i)
$$\frac{1}{z^3(z-1)^2}$$
 (ii) $\tan z$ (iii) $z \coth z$ (iv) $\frac{e^z - e}{(1-z)^3}$
(v) $\exp(\tan z)$ (vi) $\sinh \frac{z}{z^2-1}$ (vii) $\log(1+e^z)$ (viii) $\tan(z^{-1})$.

Integration and residues

- **5.** Evaluate $\oint_{\gamma} \bar{z} dz$ when γ is the circle |z| = 1, and when γ is the circle |z 1| = 1.
- **6.** (i) Show that if f(z) is analytic, then the residue of $f(z)/(z z_0)$ at $z = z_0$ is $f(z_0)$.
 - (ii) Show that if 1/f(z) has a simple pole at $z = z_0$, then its residue at $z = z_0$ is $1/f'(z_0)$.
 - (iii) Show that if h(z) has a simple zero at $z = z_0$ and g(z) is analytic and non-zero, the residue of g(z)/h(z) at $z = z_0$ is $g(z_0)/h'(z_0)$.
 - (iv) Prove the formula for the residue of a function f(z) that has a pole of order N at $z = z_0$:

$$\lim_{z \to z_0} \left\{ \frac{1}{(N-1)!} \frac{\mathrm{d}^{N-1}}{\mathrm{d}z^{N-1}} ((z-z_0)^N f(z)) \right\}$$

7. Evaluate, using Cauchy's theorem or the residue theorem,

(i)
$$\oint_{\gamma_1} \frac{\mathrm{d}z}{1+z^2}$$
 (ii) $\oint_{\gamma_2} \frac{\mathrm{d}z}{1+z^2}$ (iii) $\oint_{\gamma_3} \frac{e^z \cos z \,\mathrm{d}z}{(1+z^2) \sin z}$ * (iv) $\oint_{\gamma_4} \frac{z^3 e^{1/z} \,\mathrm{d}z}{1+z}$

where γ_1 is the ellipse $x^2 + 4y^2 = 1$, γ_2 is the circle $x^2 + y^2 = 2$, γ_3 is the circle $|z - (2+i)| = \sqrt{2}$ and γ_4 is the circle |z| = 2. 8. By integrating the function $z^n(z-a)^{-1}(z-a^{-1})^{-1}$ around the unit circle in the *z*-plane (where *a* is real, a > 1, and *n* is a non-negative integer), evaluate

$$\int_0^{2\pi} \frac{\cos n\theta}{1 - 2a\cos\theta + a^2} \,\mathrm{d}\theta$$

The calculus of residues

- **9.** Evaluate $\lim_{R \to \infty} \int_{-R}^{R} \frac{x \, dx}{1 + x + x^2}$. Why is the limit here rather than just the integral $\int_{-\infty}^{\infty}$?
- 10. By integrating around a keyhole contour, show that

$$\int_0^\infty \frac{x^{a-1} \, \mathrm{d}x}{1+x} = \frac{\pi}{\sin(\pi a)} \qquad (0 < a < 1).$$

Explain why the given restrictions on the value of a are necessary.

* 11. By integrating around a contour involving the real axis and the line $z = re^{2\pi i/n}$, evaluate

$$\int_0^\infty \frac{\mathrm{d}x}{1+x^n} \qquad (n \ge 2)$$

Check (by change of variable) that your answer agrees with that of the previous question.

12. Establish the following:

(i)
$$\int_0^\infty \frac{\cos x}{(1+x^2)^3} \, \mathrm{d}x = \frac{7\pi}{16e}$$
 (ii) $\int_0^\infty \frac{\sin^2 x}{x^2} \, \mathrm{d}x = \frac{\pi}{2}$ (iii) $\int_0^\infty \frac{\log x}{1+x^2} \, \mathrm{d}x = 0.$

[For part (iii), integrate $(\log z)^2/(1 + z^2)$ around a keyhole, or $\log z/(1 + z^2)$ along the real axis (or both). What goes wrong if you integrate $\log z/(1 + z^2)$ around a keyhole?]

* 13. Let P(z) be a non-constant polynomial. Consider the contour integral

$$I = \oint_{\gamma} \frac{P'(z)}{P(z)} \,\mathrm{d}z$$

Show that, if γ is a contour that encloses no zeros of *P*, then I = 0.

Evaluate the limit of *I* as $R \to \infty$, where γ is the circle |z| = R, and deduce that *P* has at least one zero in the complex plane.

14. By considering the integral of $f(z) = \cot z/(z^2 + \pi^2 a^2)$ around a suitable large contour, prove that, provided *ia* is not an integer,

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \coth(\pi a).$$

By considering a similar integral prove also that, if *a* is not an integer,

$$\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^2} = \frac{\pi^2}{\sin^2(\pi a)}$$

Find an expression for $\sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}$ and take the limit as $a \to 0$ to deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

Comments on or corrections to this problem sheet are very welcome and may be sent to reh10@cam.ac.uk.

Complex Methods: Example Sheet 3 Part IB, Lent Term 2016 Dr R. E. Hunt

Fourier Transforms

1. Let

$$f(x) = \begin{cases} 1 & |x| < \frac{1}{2}a, \\ 0 & \text{otherwise;} \end{cases} \qquad g(x) = \begin{cases} a - |x| & |x| < a, \\ 0 & \text{otherwise.} \end{cases}$$

Show that

$$\widetilde{f}(k) = \frac{2}{k} \sin \frac{ak}{2}$$
 and $\widetilde{g}(k) = \frac{4}{k^2} \sin^2 \frac{ak}{2}$.

Verify by contour integration the inversion formula for f(x), including the value at $x = \frac{1}{2}a$. What is the convolution of f with itself?

2. Using the results of the previous question and Parseval's identity, evaluate the integrals

$$\int_{-\infty}^{\infty} \frac{\sin^2 x}{x^2} \, \mathrm{d}x \quad \text{and} \quad \int_{-\infty}^{\infty} \frac{\sin^4 x}{x^4} \, \mathrm{d}x.$$

3. By using the relationship between the Fourier transform and its inverse, show that for real a and b with a > 0,

$$e^{-a|t|} = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{1}{\omega^2 + a^2} e^{i\omega t} \,\mathrm{d}\omega \quad \text{and} \quad e^{-at} \sin bt \, H(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{b}{(i\omega + a)^2 + b^2} e^{i\omega t} \,\mathrm{d}\omega$$

where H(t) is the Heaviside step function. What are the values of the integrals when a < 0? What happens when a = 0?

4. Show that the convolution of the function $e^{-|x|}$ with itself is given by $f(x) = (1 + |x|)e^{-|x|}$. Use the convolution theorem to show that

$$f(x) = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{e^{ikx}}{(1+k^2)^2} \,\mathrm{d}k$$

and verify this result by contour integration.

* 5. Suppose that f(x) has period 2π and let $g(x) = f(x)e^{-a|x|}$ where a > 0. Show that the Fourier Transform of g is given by

$$\widetilde{g}(k) = \frac{F(k-ia)}{1-e^{-2\pi i(k-ia)}} - \frac{F(k+ia)}{1-e^{-2\pi i(k+ia)}}$$

where $F(k) = \int_0^{2\pi} f(x) e^{-ikx} dx$.

Assuming that F is analytic, sketch the locations of the singularities of \tilde{g} in the complex k-plane. Further assuming that F decays sufficiently quickly at infinity, use the Fourier inversion theorem and a suitable contour to show that

$$g(x) = \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} F(n) e^{(in-a)x}$$

for x > 0 and derive a similar result when x < 0.

Deduce that

$$f(x) = \frac{1}{2\pi} \sum_{n = -\infty}^{\infty} F(n) e^{inx}.$$

[This shows how the Fourier transform representation of a function reduces to a Fourier series if the function is periodic.]

Laplace Transforms

- 6. Starting from the Laplace transform of 1 (namely p⁻¹), and using only standard properties of the Laplace transform (shifting, etc.), find the Laplace transforms of the following functions: (i) e^{-2t} (ii) t³e^{-3t} (iii) e^{3t} sin 4t (iv) e^{-4t} cosh 2t.
- 7. Using partial fractions and expressions for the Laplace transforms of elementary functions, find the inverse Laplace transform of $\hat{f}(p) = (p+3)/\{(p-2)(p^2+1)\}$. Verify this result using the Bromwich inversion formula.
- 8. Use Laplace transforms to solve the differential equation

$$y''' - 3y'' + 3y' - y = t^2 e^t$$

with initial conditions y(0) = 1, y'(0) = 0, y''(0) = -2.

- **9.** Solve the *integral equation* $f(t) + 4 \int_0^t (t \tau) f(\tau) d\tau = t$ for the unknown function *f*. Verify your solution.
- **10.** Solve the system of differential equations $\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -5 & 10 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ with $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ at t = 0.
- * 11. The zeroth order Bessel function $J_0(t)$ satisfies the differential equation

$$tJ_0'' + J_0' + tJ_0 = 0$$

with $J_0(0) = 1$ (and $J'_0(0) = 0$ from the equation). Find the Laplace transform of J_0 and deduce that $\int_0^\infty J_0(t) dt = 1$. Find the convolution of J_0 with itself.

- **12.** Use Laplace transforms to solve the heat equation $\partial T/\partial t = \partial^2 T/\partial x^2$ with boundary conditions $T(x,0) = 3 \sin 2\pi x$ (0 < x < 1), T(0,t) = T(1,t) = 0 (t > 0).
- **13.** Using the equality $\int_0^\infty e^{-x^2} dx = \frac{1}{2}\sqrt{\pi}$, find the Laplace transform of $f(t) = t^{-1/2}$. By integrating around a Bromwich keyhole contour, verify the inversion formula for f(t). What is the Laplace transform of $t^{1/2}$?
- * 14. The gamma and beta functions are defined for $z, w \in \mathbb{C}$ by

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} \, \mathrm{d}t \quad \text{and} \quad B(z, w) = \int_0^1 t^{z-1} (1-t)^{w-1} \, \mathrm{d}t$$

when $\operatorname{Re} z$, $\operatorname{Re} w > 0$ (and by analytic continuation elsewhere). Show that $\Gamma(z+1) = z\Gamma(z)$ and hence that $\Gamma(n+1) = n!$ if n is a positive integer. Using the previous question, write down the value of $\Gamma(\frac{1}{2})$.

For a fixed value of z, find the Laplace transform of $f(t) = t^{z-1}$ in terms of $\Gamma(z)$. Find the Laplace transform of the convolution $t^{z-1} * t^{w-1}$. Hence establish that

$$B(z,w) = \frac{\Gamma(z)\Gamma(w)}{\Gamma(z+w)}$$