Solution Outlines for Chapter 10, Part A

# 1: Prove that the mapping given in Example 2 is a homomorphism.

Let ¢ : GL(2,R) — R* be defined by A > det(A). Let A € GL(2,R). This means that A is
invertible thus the det(A) is not zero, hence the det(A) is in R*. So ¢ maps to R* as claimed.
Now let A, B € GL(2,R). Then ¢p(AB) = det(AB) = det(A)det(B) = ¢(A)p(B), so ¢ is a
homomorphism.

# 2: Prove that the mapping given in Example 3 is a homomorphism.

Let ¢ : R* — R* be defined by x + |z|. Then ¢(zy) = |zy| = |z||y| = ¢(x)d(y) so ¢ is a
homomorphism.

# 3: Prove that the mapping given in Example 4 is a homomorphism.

Let ¢ : Rlx] — R[z]| be defined by f +— f’. Then for f,g € Rlz], ¢(f +9) = (f +9) =
' +4 =¢(f) + d(g) so ¢ is a homomorphism.

# 6: Let GG be the group of all polynomials with real coefficients under addi-
tion. For each f in G let [ f denote the antiderivative of f that passes
through the point (0,0). Show that the mapping f — [ f from G to G is a
homomorphism. What is the kernel of this mapping? Is this mapping a
homomorphism if [ f denotes the antiderivative of f that passes through
(0,1)?

Let ¢ : R[z] — R[z] be defined by f +— [ f. Then ¢(f +g) = [(f + g) + ¢ where

c=—(f+g)(0) and [(f+ g) is the polynomial that is the antiderivative without a constant

term. Now, ¢(f) + ¢(9) = [ f+ [ g+ c1 + ¢a where ¢ = —f(0) and ¢; = —g(0). Hence

o(f +9) = o(f) + ¢(g) for all f,g € R[x] so ¢ is a homomorphism.

Now, the kernel of ¢ are the set of things that map to the identity, 0. So Ker¢ = {f| [ f =
0} = {a0+a1x+...+anx”’0+ao*x+‘12—1x2—i-...—|-7f—+"1x”+1 =0}={awp=a1="-=a, =
0} ={0}.

If the function [ f goes through (0,1) instead, it is not a homomorphism. This is because

o(f +h 9)(0) = 1 but (¢(f) + #(9))(0) = ¢(f)(0) + ¢(9)(0) = 1+ 1 = 2, so the functions are
not the same.

# 7: If ¢ is a homomorphism from G to H and ¢ is a homomorphism from H
to K, show that 0¢ is a homomorphism from G to K. How are Ker¢ and
Kero¢ related?

Let ¢ : G — H be a homomorphism and ¢ : H — K also be a group homomorphism. Then
061 G — K and 06(zy) = 0(6(2)6(y)) = 0(6(x))o(6(y)) = 06(x)o6(y) so the composition

is a homomorphism.



Notice that o is a homomorphism so the ker ¢ maps to the identity in H. Since o is also
a homomorphism, it maps this identity to the identity in K. Thus, Ker¢ C Kero¢. Note
that more things from H could map to the identity in K so we do not know that the
Kerg = Kerog.

# 10: Let G be a subgroup of some dihedral group. For each z in G define ¢(x)
to be +1 if x is a rotation and —1 if = is a reflection. Prove that ¢ is a
homomorphism from G to the multiplicative group {+1, —1}. What is the
kernel?

Let ¢ be defined as above. Now, elements in G either look like a rotation or a flip. So all

elements are either of the form r or 7' f. Thus to show that ¢ is a homomorphism, I need to

consider four cases: two rotations multiplied, two flips multiplied, a rotation times a flip, and

a flip times a rotation (recall: not Abelian). We consider each in turn below and conclude

that ¢ is a homomorphism.

G(rior!) =¢(rt) =1=1-1=¢(r') - ¢(r)

o(riforlf)=o(rr" I ff) =) =1=—-1--1=9¢('f) - ¢(r'f)

P(riorif) =¢(rf)=-1=1--1=¢(") ¢(1’[)

G(riford) =g(rr" I f) = ¢(r* "I f) = ~1=~1-1=¢(r'f) - ¢(r’)
Ker¢g = {g|¢(g) = 1} = { rotations in G} =<r >

# 14: Explain why the correspondence x — 3x from Z, to Z;; is not a homomor-
phism.
If the correspondence is a homomorphism, then it should preserve the operation. Let’s show

this is not true bia a counter example. Take 6,7 € Zj5. Then ¢(6 +7) = ¢(1) = 3. But
¢(6) + ¢(7) =18 +21 =8+ 1 = 9. Since 3 # 9 in Z the operation is not preserved.



