
Solution Outlines for Chapter 10, Part A

# 1: Prove that the mapping given in Example 2 is a homomorphism.

Let φ : GL(2,R)→ R∗ be defined by A 7→ det(A). Let A ∈ GL(2,R). This means that A is
invertible thus the det(A) is not zero, hence the det(A) is in R∗. So φ maps to R∗ as claimed.
Now let A,B ∈ GL(2,R). Then φ(AB) = det(AB) = det(A)det(B) = φ(A)φ(B), so φ is a
homomorphism.

# 2: Prove that the mapping given in Example 3 is a homomorphism.

Let φ : R∗ → R∗ be defined by x 7→ |x|. Then φ(xy) = |xy| = |x||y| = φ(x)φ(y) so φ is a
homomorphism.

# 3: Prove that the mapping given in Example 4 is a homomorphism.

Let φ : R[x] → R[x] be defined by f 7→ f ′. Then for f, g ∈ R[x], φ(f + g) = (f + g)′ =
f ′ + g′ = φ(f) + φ(g) so φ is a homomorphism.

# 6: Let G be the group of all polynomials with real coefficients under addi-
tion. For each f in G let

∫
f denote the antiderivative of f that passes

through the point (0, 0). Show that the mapping f 7→
∫
f from G to G is a

homomorphism. What is the kernel of this mapping? Is this mapping a
homomorphism if

∫
f denotes the antiderivative of f that passes through

(0, 1)?

Let φ : R[x] → R[x] be defined by f 7→
∫
f . Then φ(f + g) =

∫
(f + g) + c where

c = −(f + g)(0) and
∫

(f + g) is the polynomial that is the antiderivative without a constant
term. Now, φ(f) + φ(g) =

∫
f +

∫
g + c1 + c2 where c1 = −f(0) and c2 = −g(0). Hence

φ(f + g) = φ(f) + φ(g) for all f, g ∈ R[x] so φ is a homomorphism.

Now, the kernel of φ are the set of things that map to the identity, 0. So Kerφ = {f |
∫
f =

0} = {a0 + a1x+ . . .+ anx
n
∣∣0 + a0 ∗ x+ a1

2
x2 + . . .+ an

n+1
xn+1 = 0} = {a0 = a1 = · · · = an =

0} = {0}.

If the function
∫
f goes through (0,1) instead, it is not a homomorphism. This is because

φ(f + g)(0) = 1 but (φ(f) + φ(g))(0) = φ(f)(0) + φ(g)(0) = 1 + 1 = 2, so the functions are
not the same.

# 7: If φ is a homomorphism from G to H and σ is a homomorphism from H
to K, show that σφ is a homomorphism from G to K. How are Kerφ and
Kerσφ related?

Let φ : G→ H be a homomorphism and σ : H → K also be a group homomorphism. Then
σφ : G→ K and σφ(xy) = σ(φ(x)φ(y)) = σ(φ(x))σ(φ(y)) = σφ(x)σφ(y) so the composition
is a homomorphism.



Notice that σ is a homomorphism so the kerφ maps to the identity in H. Since σ is also
a homomorphism, it maps this identity to the identity in K. Thus, Kerφ ⊆ Kerσφ. Note
that more things from H could map to the identity in K so we do not know that the
Kerφ = Kerσφ.

# 10: Let G be a subgroup of some dihedral group. For each x in G define φ(x)
to be +1 if x is a rotation and −1 if x is a reflection. Prove that φ is a
homomorphism from G to the multiplicative group {+1, −1}. What is the
kernel?

Let φ be defined as above. Now, elements in G either look like a rotation or a flip. So all
elements are either of the form ri or rif . Thus to show that φ is a homomorphism, I need to
consider four cases: two rotations multiplied, two flips multiplied, a rotation times a flip, and
a flip times a rotation (recall: not Abelian). We consider each in turn below and conclude
that φ is a homomorphism.

• φ(ri ◦ rj) = φ(ri+j) = 1 = 1 · 1 = φ(ri) · φ(rj)

• φ(rif ◦ rjf) = φ(rirn−jff) = φ(ri+n−j) = 1 = −1 · −1 = φ(rif) · φ(rjf)

• φ(ri ◦ rjf) = φ(ri+jf) = −1 = 1 · −1 = φ(ri) · φ(rjf)

• φ(rif ◦ rj) = φ(rirn−jf) = φ(ri+n−jf) = −1 = −1 · 1 = φ(rif) · φ(rj)

Kerφ = {g
∣∣φ(g) = 1} = { rotations in G} =< r >

# 14: Explain why the correspondence x 7→ 3x from Z12 to Z10 is not a homomor-
phism.

If the correspondence is a homomorphism, then it should preserve the operation. Let’s show
this is not true bia a counter example. Take 6, 7 ∈ Z12. Then φ(6 + 7) = φ(1) = 3. But
φ(6) + φ(7) = 18 + 21 = 8 + 1 = 9. Since 3 6= 9 in Z10 the operation is not preserved.


