Solution Outlines for Chapter 10

# 8: Let G be a group of permutations. For each ¢ in G, define

sgn(o) = +1 if gis an even permutation.
& | —1 if ois an odd permutation.

Prove that sgn(o) is a homomorphism from G to the multiplicative group
{+1,—1}. What is the kernel? Why does this homomorphism allow you to
conclude that A, is a normal subgroup of S5, of index 2?7 Why does this
prove Exercise 23 of Chapter 57

Let G be a group of permutations, and «, 5 € G. Every permutation is either even or
odd. If both a and 8 are odd, ¢(af) = 1, since the composition of two odd permutations is
even. But this is the same as (—1)(—1) = ¢(«)o(5). If both permutations are even, a3 is
even, so ¢(af) =1 = (1)(1) = ¢(a)p(B). Finally, assume one of the permutations is even
and one is odd. Without loss of generality, assume « is even and [ is odd. Then af is
odd.So ¢(af) = —1 = 1(—1) = ¢(a)p(B). Hence, ¢ is a homomorphism.

The ker ¢ is the subgroup of even permutations in G.

If G =25,, then ker¢p = A, so A,, is a normal subgroup. The first isomorphism theorem
tells us that S, /A, ~ {1,—1} so A, has index 2 in S,,. It’s also clear that if H is a subgroup
of S,, then it is either all even or this homomorphism shows that H consists of half even and
half odd permutations since the two cosets of H have equal size and split H in this way.

# 13: Prove that (A® B)/(A® {e}) = B.

Define ¢ : (A® B) — B by (a,b) — b. Then ¢ is a homomorphism since ¢((a,b)(c,d)) =
é((ac,bd)) = bd = ¢((a,b))¢((c,d)). Further, the image of ¢ is B since for each y € B,
¢(a,b) maps to b for any a € A. Finally, the ker¢p = A® {e}. Thus, by the first isomorphism
theorem, (A @ B)/(A @ {e}) = B.

# 15: Suppose that ¢ is a homomorphism from Zsy to Z3y and Ker¢ = {0,10,20}.
If $(23) =9 determine all elements that map to 9.

Notice that this question is really just asking for ¢~1(9). By the properties of homomor-
phisms, we know that this is the coset 23Ker¢, or {23, 3,13}.

# 20: How many homomorphisms are there from Z;, onto Zs? How many are
there to 73?7

Notice that the difference between the first and second question is onto. If I want to map
onto Zg, the image of ¢ is 8. But the order of the image must divide the order of Zyj since
|Zao| = |[Ime| x | ker ¢|. But 8 does not divide 20 so there is no onto homomorphism between
Zog and Zg.



Now, consider homomorphisms in general from Zs to Zg. The order of ¢(1) must divide
8 and 20, or divide the ged(8,20) = 4. Thus the ¢(1) has order 1, 2 or 4. If it has order
1, then ¢ is the identity map. If it has order 2, the image is {4,0} so ¢(z) = 4z. If it
has order 4, the image is {2,4,6,0} so either ¢(z) = 2x or ¢(z) = 6x. Hence there are 4
homomorphisms to Zg.

# 21: If ¢ is a homomorphism from Z3;, onto a group of order 5, determine the
kernel of ¢.

Since ¢ is onto a group of order 5, the order of the kernel is % = 6. Hence the kernel
must be the order 6 subgroup of Zg,, namely {5, 10, 15,20,25,0} =< 5 >.

# 22: Suppose that ¢ is a homomorphism from a finite group G onto G, and that
G has an element of order 8. Prove that ¢ has an element of order 8.
Generalize.

Since ¢ is onto, there exists a g € G such that ¢(g) has order 8. Thus (Thm 10.1), the
order of g is divisible by 8. Say |g| = 8k for some integer k. Since < g > is cyclic, and has
order 8k, there exists ¢(8) = 4 elements of order 8 in < ¢ >C G. Hence, G has an element
of order 8.

# 24: Suppose that ¢ : Zsy — Z;5 is a group homomorphism with ¢(7) = 6.

1. Determine ¢(x).
Let ¢(1) = k. Then ¢(x) = kx. In particular, ¢(7) = 7k mod 15 = 6. So k = 3.
Hence, ¢(z) = 3.

2. Determine the image of ¢.
The image of ¢ is < 3 > in Z5, which is {3,6,9,12,0}.

3. Determine the kernel of ¢.
The Ker¢ has order 5—50 = 101in Zsy. So Ker¢ =< 5 >= {5, 10, 15, 20, 25, 30, 35, 40,45, 0}
in Zsy.

4. Determine ¢~(3).
¢ 1(3) =1+ keré = 1+ < 5 >= {6, 11, 16,21, 26, 31, 36, 41, 46, 1}.

# 25: How many homomorphisms are there from Z;, onto Z;;? How many are
there to 747

Again, the difference here is onto. We know that the image of ¢ will have order 10 if
it is onto, and this is possible since 10 does divide 20. To have an image of Zjo, ¢(1) must
generate Zjo. Hence, ¢(1) is either 1, 3, 7, or 9. So there are 4 homomorphisms onto Zi.

Now, let’s examine homomorphisms to Z;g. Then ¢(1) must have an order that divides
10 and that divides 20. However, this means that ¢(1) could be any number is Zo (since 10
divides 20)! Thus there are 10 homomorphisms to ¢(1): ¢(z) = kx for any k € Z.



# 26: Determine all homomorphisms from Z, to Z, & Z,.

There are four such homomorphisms. The image of any such homomorphism can have
order 1, 2 or 4. If it has order 1, then ¢ maps everything to the identity or ¢(x) = (0,0. The
image can not have order 4 since such a map would have to be an isomorphism and Zsy @ Zs
is not cyclic. Finally, the map could have image of size 2 so the images could be < (1,0) >,
< (0,1) > or < (1,1) >. The maps would then be z — (x mod 2,0), z — (0,2 mod 2) and
x +— (z mod 2, x mod 2) respectively.

# 31: Suppose that ¢ is a homomorphism from U(30) to U(30) and that Ker¢ =
{1,11}. If ¢(7) = 7, find all elements of U(30) that map to 7.

oY 7)=TKer¢ = {7,17}.

# 35: Prove that the mapping ¢ : Z ® Z — Z given by (a,b) — a — b is a homomor-
phism. What is the kernel of ¢? Describe the set ¢~ !(3).

Let ¢ defined as above. Then ¢((a,b) + (¢,d)) = ¢((a + ¢, b+ d)) = (a+c¢c) — (b+d) =
(a—0b)+ (¢c—d) = ¢((a,b)) + ¢((¢,d)). Hence ¢ is a homomorphism. The kernel of ¢ is the
set of pairs such that a — b = 0, or {(a,a)|a € 2}. Finally, to find ¢~!(3) observe that (3,0)
maps to 3. Thus ¢~(3) = (3,0) + Ker¢ = {(a + 3,a)|a € Z}.

# 36: Suppose that there is a homomorphism ¢ from Z & Z to a group G such
that ¢((3,2)) = a and ¢((2,1)) = b. Determine ¢((4,4)) in terms of a and b.
Assume that the operation of GG is addition.

First notice that ¢(3,2) + d(2,1) = (4,4) implies that 3¢ + 2d = 4 and 2¢ + d = 4.

Hence d = 4 — 2c so 3¢+ 8 —4c = 8 — ¢ = 4. Therefore ¢ = 4 and d = —4. So

o((4,4)) = 0(4(3,2) + —4(2,1)) = 4¢(3,2) — 4¢(2,1) = 4a — 4b.

# 37: Let H = {z € C*||z| = 1}. Prove that C*/H is isomorphic to R", the group
of positive real numbers under multiplication.

Define ¢ from C* to RT by a + bi — |a + bi| = va? + b?. So ¢((a+ bi)(c+ di)) = ¢((ac —
bd)+(ad+bc)i) = \/(ac — bd)? + (ad + bc)? = Va2c — 2abed + b2d? + a2d? + 2abed + b2c2 =
Va2 + 02d? + a?d? + 22 = \/a* (2 + d?) + 2 (2 + d?) = /(a? + b?)(® + ) = Va® + PPV + d? =
o(a+ bi)p(c + di). Thus ¢ is a homomorphism. It is clear that this map is onto since for
any r € R™, r is in C* and r — r. Finally, by definition, H is the kernel of ¢. Hence, by the
first isomorphism theorem, C*/H is isomorphic to RT.

# 42: (Third Isomorphism Theorem) If M and N are normal subgroups of G and
N < M, prove that (G/N)/(M/N)~ G/M.

Consider the map ¢ from G/N to G/M defined by gN — gM. Then ¢ is a homo-
morphism since ¢(gNhN) = ¢(ghN) = ghM = gMhM = ¢(gN)p(gM). This map is
clearly onto since gM is mapped to by gN. The kernel of this map is {gN|p(gN) = M} =
{gN|gM = M} = {gN|g € M} = M/N. Hence by the first isomorphism theorem, the third
isomorphism theorem is true.



# 48: Suppose that Z,, and Z;5 are both homomorphic images of a finite group
G. What can be said about |G|? Generalize.

If Zyp is a homomorphic image of GG, 10 divides the order of G. Similarly, 15 divides
the order of GG. Hence the order of G is divisible by lem(10,15) = 30. In general, the or-
der of GG is divisible by the least common multiple of the orders of all its homomorphic images.

# 55: Let Z[x] be the group of polynomials in x with integer coefficients under
addition. Prove that the mapping from Z[z] into Z given by f(z) — f(3)
is a homomorphism. Give a geometric description of the kernel of this
homomorphism. Generalize.

Define ¢ to be the mapping given above. Then ¢(f(z) + g(z)) = o((f + g)(x)) =
(f+9)3) = f3) +9(3) = o(f(x)) + ¢(g(x)) so ¢ is a homomorphism. Its kernel is
{f(x)|6(f(x)) = f(3) = 0}. This is the set of functions with integer coefficients whose
graphs go through the point (0,3). To generalize, 3 could be replaced with any integer.

# 65: Prove that the mapping from C* to C* given by ¢(z) = 2? is a homomorphism
and that Cc*/{1,—1} is isomorphic to C*.

Let ¢ be defined as the mapping above. We observe that ¢ is a homomorphism since
d(xy) = (zy)? = 2%y? = ¢(x)P(y) since C* is Abelian. Let x € C*. Then ¢(\/x) = z. Since
we are in C*, \/z is defined for all elements and it is indeed in C. [There are a variety of
formulas available for this.] Finally, the kernel of this map is {1, —1}. So we are done by the
first isomorphism theorem.

# 66: Let p be a prime. Determine the number of homomorphisms from z, ®© z,
into Z,.

Let ¢ : Z, ® Z, — Z, be a homomorphism. Then ¢((a,b)) = ap((1,0)) + be((0,1)). So
to determine the number of homomorphisms, we only need to know the number of possible
choices for ¢((1,0)) and ¢((0,1)). But p is prime, so we can send each of these to any element
in Z, (everything except 0 will be a generator so the image will automatically have order p
or 1). Thus there are p?> homomorphisms.



