Solution Outlines for Chapter 10

8: Let G be a group of permutations. For each σ in G, define

 $\operatorname{sgn}(\sigma) = \begin{cases} +1 & \text{if } \sigma \text{is an even permutation.} \\ -1 & \text{if } \sigma \text{is an odd permutation.} \end{cases}$

Prove that $sgn(\sigma)$ is a homomorphism from G to the multiplicative group $\{+1, -1\}$. What is the kernel? Why does this homomorphism allow you to conclude that A_n is a normal subgroup of S_n of index 2? Why does this prove Exercise 23 of Chapter 5?

Let G be a group of permutations, and $\alpha, \beta \in G$. Every permutation is either even or odd. If both α and β are odd, $\phi(\alpha\beta) = 1$, since the composition of two odd permutations is even. But this is the same as $(-1)(-1) = \phi(\alpha)\phi(\beta)$. If both permutations are even, $\alpha\beta$ is even, so $\phi(\alpha\beta) = 1 = (1)(1) = \phi(\alpha)\phi(\beta)$. Finally, assume one of the permutations is even and one is odd. Without loss of generality, assume α is even and β is odd. Then $\alpha\beta$ is odd.So $\phi(\alpha\beta) = -1 = 1(-1) = \phi(\alpha)\phi(\beta)$. Hence, ϕ is a homomorphism.

The ker ϕ is the subgroup of even permutations in G.

If $G = S_n$, then ker $\phi = A_n$ so A_n is a normal subgroup. The first isomorphism theorem tells us that $S_n/A_n \approx \{1, -1\}$ so A_n has index 2 in S_n . It's also clear that if H is a subgroup of S_n then it is either all even or this homomorphism shows that H consists of half even and half odd permutations since the two cosets of H have equal size and split H in this way.

#13: Prove that $(A \oplus B)/(A \oplus \{e\}) \approx B$.

Define $\phi : (A \oplus B) \to B$ by $(a, b) \mapsto b$. Then ϕ is a homomorphism since $\phi((a, b)(c, d)) = \phi((ac, bd)) = bd = \phi((a, b))\phi((c, d))$. Further, the image of ϕ is B since for each $y \in B$, $\phi(a, b)$ maps to b for any $a \in A$. Finally, the $ker\phi = A \oplus \{e\}$. Thus, by the first isomorphism theorem, $(A \oplus B)/(A \oplus \{e\}) \approx B$.

15: Suppose that ϕ is a homomorphism from \mathbb{Z}_{30} to \mathbb{Z}_{30} and $Ker\phi = \{0, 10, 20\}$. If $\phi(23) = 9$ determine all elements that map to 9.

Notice that this question is really just asking for $\phi^{-1}(9)$. By the properties of homomorphisms, we know that this is the coset $23Ker\phi$, or $\{23, 3, 13\}$.

20: How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_8 ? How many are there to \mathbb{Z}_8 ?

Notice that the difference between the first and second question is onto. If I want to map onto \mathbb{Z}_8 , the image of ϕ is 8. But the order of the image must divide the order of \mathbb{Z}_{20} since $|\mathbb{Z}_{20}| = |Im\phi| \times |\ker\phi|$. But 8 does not divide 20 so there is no onto homomorphism between \mathbb{Z}_{20} and \mathbb{Z}_8 . Now, consider homomorphisms in general from \mathbb{Z}_{20} to \mathbb{Z}_8 . The order of $\phi(1)$ must divide 8 and 20, or divide the gcd(8, 20) = 4. Thus the $\phi(1)$ has order 1, 2 or 4. If it has order 1, then ϕ is the identity map. If it has order 2, the image is $\{4, 0\}$ so $\phi(x) = 4x$. If it has order 4, the image is $\{2, 4, 6, 0\}$ so either $\phi(x) = 2x$ or $\phi(x) = 6x$. Hence there are 4 homomorphisms to \mathbb{Z}_8 .

21: If ϕ is a homomorphism from \mathbb{Z}_{30} onto a group of order 5, determine the kernel of ϕ .

Since ϕ is onto a group of order 5, the order of the kernel is $\frac{30}{5} = 6$. Hence the kernel must be the order 6 subgroup of \mathbb{Z}_{30} , namely $\{5, 10, 15, 20, 25, 0\} = <5>$.

22: Suppose that ϕ is a homomorphism from a finite group G onto \overline{G} , and that \overline{G} has an element of order 8. Prove that G has an element of order 8. Generalize.

Since ϕ is onto, there exists a $g \in G$ such that $\phi(g)$ has order 8. Thus (Thm 10.1), the order of g is divisible by 8. Say |g| = 8k for some integer k. Since $\langle g \rangle$ is cyclic, and has order 8k, there exists $\phi(8) = 4$ elements of order 8 in $\langle g \rangle \subseteq G$. Hence, G has an element of order 8.

24: Suppose that $\phi : \mathbb{Z}_{50} \to \mathbb{Z}_{15}$ is a group homomorphism with $\phi(7) = 6$.

- 1. Determine $\phi(x)$. Let $\phi(1) = k$. Then $\phi(x) = kx$. In particular, $\phi(7) = 7k \mod 15 = 6$. So k = 3. Hence, $\phi(x) = 3x$.
- 2. Determine the image of ϕ . The image of ϕ is $\langle 3 \rangle$ in \mathbb{Z}_{15} , which is $\{3, 6, 9, 12, 0\}$.
- 3. Determine the kernel of ϕ . The $Ker\phi$ has order $\frac{50}{5} = 10$ in \mathbb{Z}_{50} . So $Ker\phi = <5>=\{5, 10, 15, 20, 25, 30, 35, 40, 45, 0\}$ in \mathbb{Z}_{50} .
- 4. Determine $\phi^{-1}(3)$. $\phi^{-1}(3) = 1 + \ker \phi = 1 + \langle 5 \rangle = \{6, 11, 16, 21, 26, 31, 36, 41, 46, 1\}.$

25: How many homomorphisms are there from \mathbb{Z}_{20} onto \mathbb{Z}_{10} ? How many are there to \mathbb{Z}_{10} ?

Again, the difference here is onto. We know that the image of ϕ will have order 10 if it is onto, and this is possible since 10 does divide 20. To have an image of \mathbb{Z}_{10} , $\phi(1)$ must generate \mathbb{Z}_{10} . Hence, $\phi(1)$ is either 1, 3, 7, or 9. So there are 4 homomorphisms onto \mathbb{Z}_{10} .

Now, let's examine homomorphisms to \mathbb{Z}_{10} . Then $\phi(1)$ must have an order that divides 10 and that divides 20. However, this means that $\phi(1)$ could be any number is \mathbb{Z}_{10} (since 10 divides 20)! Thus there are 10 homomorphisms to $\phi(1)$: $\phi(x) = kx$ for any $k \in \mathbb{Z}_{10}$.

26: Determine all homomorphisms from \mathbb{Z}_4 to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

There are four such homomorphisms. The image of any such homomorphism can have order 1, 2 or 4. If it has order 1, then ϕ maps everything to the identity or $\phi(x) = (0, 0)$. The image can not have order 4 since such a map would have to be an isomorphism and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ is not cyclic. Finally, the map could have image of size 2 so the images could be $\langle (1,0) \rangle$, $\langle (0,1) \rangle$ or $\langle (1,1) \rangle$. The maps would then be $x \mapsto (x \mod 2, 0), x \mapsto (0, x \mod 2)$ and $x \mapsto (x \mod 2, x \mod 2)$ respectively.

31: Suppose that ϕ is a homomorphism from U(30) to U(30) and that $Ker\phi = \{1, 11\}$. If $\phi(7) = 7$, find all elements of U(30) that map to 7. $\phi^{-1}(7) = 7Ker\phi = \{7, 17\}.$

#35: Prove that the mapping $\phi : \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}$ given by $(a, b) \mapsto a - b$ is a homomorphism. What is the kernel of ϕ ? Describe the set $\phi^{-1}(3)$.

Let ϕ defined as above. Then $\phi((a, b) + (c, d)) = \phi((a + c, b + d)) = (a + c) - (b + d) = (a - b) + (c - d) = \phi((a, b)) + \phi((c, d))$. Hence ϕ is a homomorphism. The kernel of ϕ is the set of pairs such that a - b = 0, or $\{(a, a) | a \in \mathbb{Z}\}$. Finally, to find $\phi^{-1}(3)$ observe that (3, 0) maps to 3. Thus $\phi^{-1}(3) = (3, 0) + Ker\phi = \{(a + 3, a) | a \in \mathbb{Z}\}$.

36: Suppose that there is a homomorphism ϕ from $\mathbb{Z} \oplus \mathbb{Z}$ to a group G such that $\phi((3,2)) = a$ and $\phi((2,1)) = b$. Determine $\phi((4,4))$ in terms of a and b. Assume that the operation of G is addition.

First notice that c(3,2) + d(2,1) = (4,4) implies that 3c + 2d = 4 and 2c + d = 4. Hence d = 4 - 2c so 3c + 8 - 4c = 8 - c = 4. Therefore c = 4 and d = -4. So $\phi((4,4)) = \phi(4(3,2) + -4(2,1)) = 4\phi(3,2) - 4\phi(2,1) = 4a - 4b$.

37: Let $H = \{z \in \mathbb{C}^* | |z| = 1\}$. Prove that \mathbb{C}^*/H is isomorphic to \mathbb{R}^+ , the group of positive real numbers under multiplication.

Define ϕ from \mathbb{C}^* to \mathbb{R}^+ by $a + bi \mapsto |a + bi| = \sqrt{a^2 + b^2}$. So $\phi((a + bi)(c + di)) = \phi((ac - bd) + (ad + bc)i) = \sqrt{(ac - bd)^2 + (ad + bc)^2} = \sqrt{a^2c^2 - 2abcd + b^2d^2 + a^2d^2 + 2abcd + b^2c^2} = \sqrt{a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2} = \sqrt{a^2(c^2 + d^2) + b^2(c^2 + d^2)} = \sqrt{(a^2 + b^2)(c^2 + d^2)} = \sqrt{a^2 + b^2}\sqrt{c^2 + d^2} = \phi(a + bi)\phi(c + di)$. Thus ϕ is a homomorphism. It is clear that this map is onto since for any $r \in \mathbb{R}^+$, r is in \mathbb{C}^* and $r \mapsto r$. Finally, by definition, H is the kernel of ϕ . Hence, by the first isomorphism theorem, \mathbb{C}^*/H is isomorphic to \mathbb{R}^+ .

42: (Third Isomorphism Theorem) If M and N are normal subgroups of G and $N \leq M$, prove that $(G/N)/(M/N) \approx G/M$.

Consider the map ϕ from G/N to G/M defined by $gN \mapsto gM$. Then ϕ is a homomorphism since $\phi(gNhN) = \phi(ghN) = ghM = gMhM = \phi(gN)\phi(gM)$. This map is clearly onto since gM is mapped to by gN. The kernel of this map is $\{gN|\phi(gN) = M\} = \{gN|gM = M\} = \{gN|g \in M\} = M/N$. Hence by the first isomorphism theorem, the third isomorphism theorem is true.

#48: Suppose that \mathbb{Z}_{10} and \mathbb{Z}_{15} are both homomorphic images of a finite group G. What can be said about |G|? Generalize.

If \mathbb{Z}_{10} is a homomorphic image of G, 10 divides the order of G. Similarly, 15 divides the order of G. Hence the order of G is divisible by lcm(10, 15) = 30. In general, the order of G is divisible by the least common multiple of the orders of all its homomorphic images.

55: Let $\mathbb{Z}[x]$ be the group of polynomials in x with integer coefficients under addition. Prove that the mapping from $\mathbb{Z}[x]$ into \mathbb{Z} given by $f(x) \mapsto f(3)$ is a homomorphism. Give a geometric description of the kernel of this homomorphism. Generalize.

Define ϕ to be the mapping given above. Then $\phi(f(x) + g(x)) = \phi((f + g)(x)) = (f + g)(3) = f(3) + g(3) = \phi(f(x)) + \phi(g(x))$ so ϕ is a homomorphism. Its kernel is $\{f(x)|\phi(f(x)) = f(3) = 0\}$. This is the set of functions with integer coefficients whose graphs go through the point (0,3). To generalize, 3 could be replaced with any integer.

65: Prove that the mapping from \mathbb{C}^* to \mathbb{C}^* given by $\phi(z) = z^2$ is a homomorphism and that $\mathbb{C}^*/\{1, -1\}$ is isomorphic to \mathbb{C}^* .

Let ϕ be defined as the mapping above. We observe that ϕ is a homomorphism since $\phi(xy) = (xy)^2 = x^2y^2 = \phi(x)\phi(y)$ since \mathbb{C}^* is Abelian. Let $x \in \mathbb{C}^*$. Then $\phi(\sqrt{x}) = x$. Since we are in \mathbb{C}^* , \sqrt{x} is defined for all elements and it is indeed in \mathbb{C} . [There are a variety of formulas available for this.] Finally, the kernel of this map is $\{1, -1\}$. So we are done by the first isomorphism theorem.

66: Let p be a prime. Determine the number of homomorphisms from $\mathbb{Z}_p \oplus \mathbb{Z}_p$ into \mathbb{Z}_p .

Let $\phi : \mathbb{Z}_p \oplus \mathbb{Z}_p \to \mathbb{Z}_p$ be a homomorphism. Then $\phi((a, b)) = a\phi((1, 0)) + b\phi((0, 1))$. So to determine the number of homomorphisms, we only need to know the number of possible choices for $\phi((1, 0))$ and $\phi((0, 1))$. But p is prime, so we can send each of these to any element in \mathbb{Z}_p (everything except 0 will be a generator so the image will automatically have order por 1). Thus there are p^2 homomorphisms.