Solution Outlines for Chapter 14

4: Find a subring of $\mathbb{Z} \oplus \mathbb{Z}$ that is not an ideal of $\mathbb{Z} \oplus \mathbb{Z}$.

 $I = \{(a, a) | a \in \mathbb{Z}\}$ is a subring but not an ideal since $(1, 2)(a, a) = (a, 2a) \notin I$.

6: Find all maximal ideals in:

- a. \mathbb{Z}_8 : (2)
- b. \mathbb{Z}_{10} : (2), (5)
- c. \mathbb{Z}_{12} : (2), (3)
- d. \mathbb{Z}_n : The maximal ideals are of the form (p) where p is a prime that divides n.

8: Prove that the intersection of any set of ideals of a ring is an ideal.

Let J be the intersection of ideals, and $a, b \in J$. Then a and b are in each ideal so a - b, ra and ar are in each ideal as well (here, r is an arbitrary ring element). Then a - b, ra and ar are each in J and J is an ideal. Notice that J is non-empty since each ideal contains 0.

11: In the ring of integers, find a positive integer a such that:

- 1. < a > = < 2 > + < 3 >Since $< a > \in 1 = -2 + 3, a = 1.$
- 2. < a > = < 6 > + < 8 > a = 2
- 3. < a > = < m > + < n > a = gcd(m, n)

14: Let A and B be ideals of a ring. Prove that $AB \subseteq A \cap B$.

Let $x \in AB$. Then x is of the form ab for some $a \in A$ and $b \in B$. Since A is an ideal, $ab \in A$. Similarly, $ab \in B$. Hence $x \in A \cap B$.

20: Suppose that R is a commutative ring and |R| = 30. If I is an ideal of R and |I| = 10, prove that I is a maximal ideal.

Let R be an order 30 commutative ring, and I be an ideal of R with order 10. Then R/I has order 3 and is thus isomorphic to \mathbb{Z}_3 . Since \mathbb{Z}_3 is a field, I must be a maximal ideal.

28: Show that $\mathbb{R}[x] / \langle x^2 + 1 \rangle$ is a field.

To show that $\mathbb{R}[x]/\langle x^2+1\rangle$ is a field, we only need to show that $\langle x^2+1\rangle$ is maximal in $\mathbb{R}[x]$. Suppose that $I = \langle x^2+1\rangle \subset J \subseteq \mathbb{R}[x]$. Then there exists an $f(x) \in J$ such that $f(x) \notin I$. Hence $f(x) = q(x) \cdot (x^2+1) + r(x)$ for some polynomials $q(x), r(x) \in \mathbb{R}[x]$ with $0 \leq deg(r(x)) < 2$. Moreover, $r(x) \neq 0$. Hence r(x) is linear and of the form ax + b for some non-zero real numbers a, b. Now, $f(x) - q(x)(x^2+1) \in J$ so $r(x) = ax + b \in J$.

Since $ax - b \in R[x]$, $(ax + b)(ax - b) = a^2x^2 - b^2 \in J$. Similarly, $a^2(x^2 + 1) \in J$. Thus $(a^2x^2 + a^2) - (a^2x^2 - b^2) = a^2 + b^2 \in J$. Since $a^2 + b^2$ in not zero, J contains a constant and all constants in R[x] are units. Hence $1 \in J$ and J = R. Therefore we can conclude that $\langle x^2 + 1 \rangle$ is indeed maximal as desired.

32: Let $R = \mathbb{Z}_8 \oplus \mathbb{Z}_{30}$. Find all maximal ideals of R, and for each maximal ideal I, identify the size of the field R/I.

 $<1>\oplus<2>$. In this case the size of the quotient field is (8*30)/(8*15) = 2. $<1>\oplus<3>$. In this case the size of the quotient field is (8*30)/(8*10) = 3. $<1>\oplus<5>$. In this case the size of the quotient field is (8*30)/(8*6) = 5. $<2>\oplus<1>$. In this case the size of the quotient field is (8*30)/(4*30) = 2.

33: How many elements are in $\mathbb{Z}[i]/\langle 3+i\rangle$? Give reasons for your answer.

First we notice that $(3 + i)(3 - i) = 10 \in (3 + i)$. Hence 10 + (3 + i) = (3 + i). Now what about the *i* terms? Observe that i + (3 + i) = i + (-3 - i) + (3 + i) = -3 + (3 + i) = -

#36: Let R be a ring and let I be an ideal of R. Prove that the factor ring R/I is commutative if and only if $rs - sr \in I$ for all r and s in R.

Let R and I be as above. Assume R/I is commutative. Then for all $r, s \in R$, (r+I)(s+I) = rs + I = sr + I = (s+I)(r+I). Since rs + I = sr + I, $rs - sr \in I$ (property of cossets in additive notation). Now assume that $rs - sr \in I$ for all $r, s \in R$. Then rs + I = sr + I but reversing the calculation above shows that this implies the quotient ring is commutative.

38: Prove that $I = \langle 2 + 2i \rangle$ is not a prime ideal of $\mathbb{Z}[i]$. How many elements are in $\mathbb{Z}[i]/I$? What is the characteristic of $\mathbb{Z}[i]/I$?

Notice that $2(1+i) = 2 + 2i \in I$ but $2 \notin I$ and $1+i \notin I$. This shows I is not a prime ideal. Notice, $(2+2i)(1-i) = 2 - 2i + 2i + 2 = 4 \in I$ and i+I = -(i+2) + I = -i+2+I. So a+bi+I would have a in 0, 1, 2, 3 and b in 0, 1. Thus there are 4 * 2 = 8 elements in the quotient ring. The characteristic is n such that n(a+bi) + I = I, and hence it is 4.

39: In $\mathbb{Z}_5[x]$, let $I = \langle x^2 + x + 2 \rangle$. Find the multiplicative inverse of 2x + 3 + Iin $\mathbb{Z}_5[x]/I$.

To be the multiplicative inverse, we need (f(x)+I)(2x+3+I) = (f(x)*(2x+3))+I = 1+I. Observe $(3x + 1)(2x + 3) + I = 6x^2 + 11x + 3 + I = x^2 + x + 3 + I = 1 + I$. Hence the multiplicative inverse is 3x + 1 + I.

46: Let R be a commutative ring and let A be any ideal of R. Show that the nil radical of A, $N(A) = \{r \in R | r^n \in A \text{ for some positive integer } n\}$ is an ideal of R.

Let $x, y \in A$. Then there exists an $n, m \in \mathbb{Z}_{>0}$ such that $x^n \in A$ and $y^m \in A$. Now $(x+y)^{n+m}$ expands such that for each term either the power of $x \ge n$ or the power of $y \ge m$. Hence, since A is an ideal, each term is in A so $x + y \in A$. Thus $x + y \in N(A)$. Now, let $r \in R$. Then $(rx)^n = r^n x^n$ since R is commutative. We know that $x^n \in A$ and $r^n \in R$, so $r^n x^n \in A$. Thus $rx \in N(A)$. Similarly, $xr \in N(A)$.

47: Let $R = \mathbb{Z}_{27}$. Find:

a. N(<0>).

By definition, $N(<0>) = \{a \in \mathbb{Z}_{27} | a^n \in <0> \text{ for some } n \in \mathbb{Z}_{\geq 0}\} = <3>.$

b. N(<3>).

< 3 >

c. N(<9>).

< 3 >

#49: Let R be a commutative ring. Show that R/N(<0>) has no nonzero nilpotent elements.

Suppose that x + N(<0>) is a nilpotent element in R/N(<0>) = R/I. Then $(x+I)^n = x^n + I$ is I for some $n \in \mathbb{Z}_{>0}$. This implies that $x^n \in I$. Hence there exists an m such that $(x^n)^m = 0$, by the definition of N(<0>). But this implies that $x \in I$. Hence x + I = I and was zero to begin with.