Solution Outlines for Chapter 14

# 4: Find a subring of Z ® Z that is not an ideal of Z @ Z.
I ={(a,a)|a € Z} is a subring but not an ideal since (1,2)(a,a) = (a,2a) & 1.

# 6: Find all maximal ideals in:
a. Zg: (2)
b. Zio: (2), (5)
c. Zia: (2), (3)
d. Z,: The maximal ideals are of the form (p) where p is a prime that divides n.

# 8: Prove that the intersection of any set of ideals of a ring is an ideal.

Let J be the intersection of ideals, and a,b € J. Then a and b are in each ideal so a — b,
ra and ar are in each ideal as well (here, r is an arbitrary ring element). Then a — b, ra
and ar are each in J and J is an ideal. Notice that J is non-empty since each ideal contains 0.

# 11: In the ring of integers, find a positive integer a such that:

l. <a>=<2>+4+<3>8Since<a>1=-2+3,a=1.
2. <a>=<6>+<8>a=2
3. <a>=<m>+<n>a=ged(m,n)

# 14: Let A and B be ideals of a ring. Prove that AB C AN B.

Let x € AB. Then z is of the form ab for some a € A and b € B. Since A is an ideal,
ab € A. Similarly, ab € B. Hence x € AN B.

# 20: Suppose that R is a commutative ring and |R| = 30. If I is an ideal of R
and |I| = 10, prove that [ is a maximal ideal.

Let R be an order 30 commutative ring, and I be an ideal of R with order 10. Then R/
has order 3 and is thus isomorphic to Zz. Since Zs is a field, I must be a maximal ideal.

28: Show that R[z|/ < 2®> + 1 > is a field.
#

To show that R[x]/ < 2% + 1 > is a field, we only need to show that < x? + 1 > is
maximal in R[z]. Suppose that [ =< 2> +1 >C J C R[z]. Then there exists an f(z) € J
such that f(z) ¢ I. Hence f(z) = q(z)-(2*+1)+r(z) for some polynomials ¢(z),r(z) € R[]
with 0 < deg(r(z)) < 2. Moreover, r(z) # 0. Hence r(x) is linear and of the form azx + b
for some non-zero real numbers a,b. Now, f(z) — q(z)(z*+ 1) € J so r(z) = ax +b € J.



Since ax — b € Rz, (ax + b)(ax — b) = a*x® — b* € J. Similarly, a*(z®> + 1) € J. Thus
(a*2? + a?) — (a*x* — b?) = a® + b* € J. Since a® + b* in not zero, J contains a constant and
all constants in R[x] are units. Hence 1 € J and J = R. Therefore we can conclude that
< 2%+ 1 > is indeed maximal as desired.

# 32: Let R = Zg P Z3y. Find all maximal ideals of R, and for each maximal ideal
I, identify the size of the field R/I.

< 1> @ < 2>. In this case the size of the quotient field is (8 * 30)/(8 *x 15) =
< 1> ® < 3>. In this case the size of the quotient field is (8 x 30)/(8 * 10)
< 1> @& < 5>. In this case the size of the quotient field is (8 x 30)/(8 x 6) =

< 2> @ < 1>. In this case the size of the quotient field is (8 x 30)/(4 * 30)

# 33: How many elements are in Z[i|/ < 3+1i >7 Give reasons for your answer.

First we notice that (3 +14)(3 —i) = 10 €< 3+ >. Hence 10+ < 3+i >=< 3 +i >.
Now what about the i terms? Observe that i+ < 3+i>=i+ (-3 —9)+ <3+i>= -3+ <
3+1>=T+ < 3+1>. Hence a+ bi+ < 3+ bi > can be expressed as just a+ < 3+ bi, and
a ranges from 0 to 9. Moreover, it is clear that 1+ < 3 4+ ¢ > has (additive) order 10. Thus
the quotient ring is simply {k+ < 3+ > |k € {0,1,...,9}}. So there are 10 elements in
the quotient ring.

# 36: Let R be a ring and let [ be an ideal of R. Prove that the factor ring R//
is commutative if and only if rs —sr € I for all » and s in R.

Let R and I be as above. Assume R/I is commutative. Then for all ;s € R, (r+1I)(s+
IN=rs+I=sr+1=(s+1)(r+1). Since rs+1 = sr+1,rs—sr € I (property of cossets
in additive notation). Now assume that rs—sr € I forall r,s € R. Then rs+1 = sr+1 but
reversing the calculation above shows that this implies the quotient ring is commutative.

# 38: Prove that [ =< 2+ 2i > is not a prime ideal of z[i]. How many elements
are in Z[i]/I? What is the characteristic of z[i]/I?

Notice that 2(14+4i) =2+ 2i € I but 2 ¢ I and 1+ ¢ ¢ I. This shows I is not a prime
ideal. Notice, (2+2i)(1—1)=2—-2i+2i+2=4€Jandi+[=—(i+2)+[=—i+2+1.
So a + bi 4+ I would have a in 0,1,2,3 and b in 0, 1. Thus there are 4 * 2 = 8 elements in the
quotient ring. The characteristic is n such that n(a + bi) + I = I, and hence it is 4.

# 39: In Zs[z], let I =< 2> + x + 2 >. Find the multiplicative inverse of 2z + 3 + [
in Zs, [ZL’]/I
To be the multiplicative inverse, we need (f(x)+1)(2e04+3+1) = (f(x)*(22+3))+1 = 1+1.
Observe 3z +1)(2z +3)+1 =62>+1lx +3+ 1 =2*+x+3+ 1 =1+ 1. Hence the
multiplicative inverse is 3z 4+ 1 + I.

# 46: Let R be a commutative ring and let A be any ideal of R. Show that the
nil radical of A, N(A) = {r € R|r" € A for some positive integer n} is an ideal
of R.



Let x,y € A. Then there exists an n,m € Z-o such that 2" € A and y™ € A. Now
(x+y)" ™™ expands such that for each term either the power of 2 > n or the power of y > m.
Hence, since A is an ideal, each term is in A so z +y € A. Thus x +y € N(A). Now, let
r € R. Then (rz)" = r"2" since R is commutative. We know that 2" € A and ™ € R, so
r"z™ € A. Thus ra € N(A). Similarly, xr € N(A).

# 47: Let R = Zy;. Find:

a. N(<0>).

By definition, N(< 0 >) = {a € Zy|a"” €< 0 > for some n € Z>p} =< 3 >.

b. N(< 3>).

<3 >

c. N(<9>).

<3 >

# 49: Let R be a commutative ring. Show that R/N(< 0 >) has no nonzero
nilpotent elements.
Suppose that x + N(< 0 >) is a nilpotent element in R/N(< 0 >) = R/I. Then
(x +I)" = o™+ [ is I for some n € Z-o. This implies that 2™ € I. Hence there exists an
m such that (z™)™ = 0, by the definition of N(< 0 >). But this implies that = € I. Hence
x + I = I and was zero to begin with.



