Solution Outlines for Chapter 16

# 1: Let f(z) = 42° +22% + 2+ 3 and g(z) = 3z* + 32° + 322 + v+ 4, where f(z),g(z) €
Zs|z]. Compute f(z)+ g(x) and f(x) - g(x).

fl@)+g(x) =3z +(4+3)23+ 2+ 3)2* + (1 + Do+ (3+4) = 3z* + 223 + 22 + 20 + 2

# 2: In Z3[z], show that the distinct polynomials 2* + z and 2%+ x determine the
same function from Z; to Zs.

Let f(z) = ' + z and g(x) = 2? + x. Observe: f(0) = 0 = g(0), f(1) = 2 = ¢(1), and
F2)=24+2=18=0=6=22+2=g(2).

# 4: If R is a commutative ring, show that the characteristic of R[z] is the same
as the characteristic of R.

Let R be a commutative ring with characteristic k. Then kr = 0 for all » € R. Now, let
f(x) € R[z]. Then f(x) = a,z™ + ap_12" ' + -+ + a1z + ap for some a; € R, and some
n € Zsg. Then kf(z) = (kay)z™ + (kap—1)z" '+ + (kay)x + kag=0+0+---+0=0.
Hence the characteristic of R[z]| is at most k. However, since for all » € R, r € R[z], the
characteristic of R[z] must be at least k. Thus the characteristic is exactly k.

# 6: List all the polynomials of degree 2 in Z;[z|. Which of these are equal as
functions from Z, to Z,?

If f(x) is to have degree 2 in Zy[z] then its leading term must be z2. The linear and constant
terms can have coefficient 0 or 1, so there are 4 total options. The options are 2%, 22 + 1,
22+ 2z, and 22 + x + 1.

Now, to determine which are equal as functions, I simply need to observe the behavior
of each polynomial on the elements of Z,. If they send the elements to the same place, then
they are equal as functions. For 2%: 0+ 0, 1 — 1. For 22 +1: 0~ 1, 1 — 0. For 2% + x:
00,1 0. For 22 4+ 2+ 1: 0+ 1, 1 — 1. Since none of these send both 0 and 1 to the
same place, they are all distinct as functions.

# 10: Let R be a commutative ring. Show that R[z| has a subring isomorphic to
R.

Let R be a commutative ring and consider R[x]. Define ¢ : R — R[z| by r +— r. Clearly ¢
is one-to-one and a homomorphism. Now, ¢(R) is a subring of R[x] since it is the image of
a homomorphism. Then ¢(R) is a subring of R|x] isomorphic to R.

#11: If ¢ : R — S is a ring homomorphism, define ¢ : R[x] — S[z] by (aa™+ -+
ar1x + ag) — ¢(an)x™ + -+ - + ¢(ag). Show that ¢ is a ring homomorphism.



Let f(2) = apa™ + ap_12™ 1 4+ -+ a12 + ap and g(z) = bpx™ + by 12™ 1 + -+ - by + by with
f(z),9(x) € R[z]. Let s = max{n,m}. Now, é(f(x) + g(x)) = ¢((as + bs)x® + (a1 +
be_1)z" L+ o+ (a1 + b))z + (ap + bo)) = @(as + bs)x® + -+ + (a1 + by)x + dag + by)
where a; and b; are in R. But ¢ is a ring homomorphism from R to S so (i) it splits over
addition and (ii) it yields coefficients in S. So ¢(f(z) + g(z)) = (¢(an)x™ + -+ + d(ay)w +
B(ag) + (d(bp)z™ + - -+ ¢(by)x + ¢(bo)) = ¢(f(x)) + d(g(x)). Similarly, you can show that

¢ preserves multiplication. Hence it is a ring homomorphism.

# 15: Show that the polynomial 2z + 1 in 7Z[z] has a multiplicative inverse in
24[.%'].

Observe that (22 +1)(2x + 1) = 422 + 42 + 1 =1 so 2z + 1 is its own inverse.

# 16: Are there any nonconstant polynomials in Z[z] that have multiplicative
inverses? Explain your answers.

No. Note, we argued this intuitively. Here’s a more formal argument. Suppose that f(z) =
S" @zt has a multiplicative inverse g(x) = S biz’. Then f(z)g(z) = S " i’ = 1.
This implies that ¢g = 1 and ¢, = 0 for all k¥ # 0. In particular, ¢; = agby + a1by = 0. But
ap = bal fromecy=1. Soc; = balbl +a1bg = 0 This implies that b = 0 = a;. But induction,
it is clear that a; = b; = 0 for all i« # 0. Hence, f(z) and g(x) are constant, which is a
contradiction.

# 17: Let p be a prime. Are there any non constant polynomials in Z,[z] that
have multiplicative inverses? Explain your answer.

No, there are not any. Consider f(z)g(x) = (apa™ + -+ a1z + ag) (bpx™ + -+ - + by + by) =
a,bma" ™ 4+ - + agby and a,b,, # 0. For this to have a multiplicative inverse, each non-
constant term in f(z)g(z) must be 0, but a,b,, non-zero shows this is not so.

# 19: (Degree Rule) Let D be an integral domain and f(x),g(x) € D[z]. Prove
that deg (f(z)g(x)) = deg f(z) + deg g(z). Show, by example, that for a
commutative ring R it is possible that deg f(z)g(z) < deg f(z) + deg g(z),
where f(z) and ¢(z) are nonzero elements in R|zx].

Let D be an integral domain and f(z), g(xz) € D[z]. Suppose that f(z) = > a;z" and
g(x) = Y7, bia' so that deg(f(z)) = n and deg(g(x)) = m. We know that f(z)g(x) =
Z?:Jrom Crpm@™T™ where ¢,y = apb™™ + a0 4o a1 b+ ag,bY. Since the a;
and b; are in an integral domain, a;b; # 0 when a; # 0 and b; # 0. In particular, we know
that a, and b,, are non-zero so a,b,, # 0. Now, all other terms in the sum of ¢, ,, are zero
because either a; has i > n or b; has j > m. Thus ¢,y = ayby,. Thus, ¢,4py, is not zero and
the deg(f(z)g(x)) =n+m.



# 20: Prove that the ideal < x > in Q[z] is maximal.

First, let’s look at Q[z]/ < x >. This quotient ring contains cosets that look like a+ < x >
where a € Q. Thus, using the map Q[z|/ < z >— Q defined by a+ < z >= a is an isomor-
phism. Thus Q[z]/ < x >~ Q. Now, Q is a field so < z > is maximal.

# 28: Let f(x) € R[z]. Suppose that f(a) = 0 but f'(a) # 0 where f'(z) is the
derivative of f(z). Show that a is a zero of f(z) of multiplicity 1.

Clearly, f(z) has a as a zero with multiplicity of at least 1. Suppose that it has multiplicity
k> 1. Then f(z) = (z—a)*g(x) for some g(z). So f'(x) = k(z—a)*'g(z)+(x—a)*q (z) =
(x — a)* Y (kg(z) + (x — a)g’(x)). Now, k > 1 implies that k — 1 > 1. So f’(a) = 0, which is
a contradiction.

# 50: Let R be a ring and x be an indeterminate. Prove that the rings R[z] and
R[z?] are ring-isomorphic.

Let R be a ring and x be an indeterminate. Consider the rings R[z] and R[z?]. To show
that they are isomorphic, let ¢ : R[z] — R[x?] be defined by f(z) + f(2?). We see that
addition is preserved since ¢(f(z) 4+ g(z)) = o((f + 9)(x)) = (f + g)(2?) = f(a?) + g(2?) =
o(f(x)) + ¢(g(x)). Similarly, it is clear that multiplication is preserved. This is one-to-one
since ker¢ = { f(z)|f(2?) = 0} = {0}, and onto is also straightforward to show.

# 56: For any field I recall that F(z) denotes the field of quotients of the ring
Flz]. Prove that there is no element in F(z) whose square is z.

2
Suppose that there is an element in F'(x) whose square is z. Then (%) =x. WLOG,
g(z

assume that f(z) and g(x) have no common factors (so that the quotient is already in
f(ff?)>2 (f(x))?

) == = So (f())* = x(g(x))*. Hence, (f(0))* =0
g(x) (9())?

so f(0) = 0. This means that z|f(z). So f(z) = zh(x) for some h(z). Plugging this
in, we have that (zh(z))? = z(g9(x))? so x(h(z))? = (g(z))?. Using the same argument as
before, g(0) = 0 and z|g(x). Therefore f(z) and g(z) have x as a common factor, which is

a contradiction.

reduced form). Then



