
Solution Outlines for Chapter 16

# 1: Let f(x) = 4x3 +2x2 +x+3 and g(x) = 3x4 +3x3 +3x2 +x+4, where f(x), g(x) ∈
Z5[x]. Compute f(x) + g(x) and f(x) · g(x).

f(x) + g(x) = 3x4 + (4 + 3)x3 + (2 + 3)x2 + (1 + 1)x+ (3 + 4) = 3x4 + 2x3 + x2 + 2x+ 2

# 2: In Z3[x], show that the distinct polynomials x4 +x and x2 +x determine the
same function from Z3 to Z3.

Let f(x) = x4 + x and g(x) = x2 + x. Observe: f(0) = 0 = g(0), f(1) = 2 = g(1), and
f(2) = 24 + 2 = 18 = 0 = 6 = 22 + 2 = g(2).

# 4: If R is a commutative ring, show that the characteristic of R[x] is the same
as the characteristic of R.

Let R be a commutative ring with characteristic k. Then kr = 0 for all r ∈ R. Now, let
f(x) ∈ R[x]. Then f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 for some ai ∈ R, and some

n ∈ Z>0. Then kf(x) = (kan)xn + (kan−1)x
n−1 + · · · + (ka1)x + ka0 = 0 + 0 + · · · + 0 = 0.

Hence the characteristic of R[x] is at most k. However, since for all r ∈ R, r ∈ R[x], the
characteristic of R[x] must be at least k. Thus the characteristic is exactly k.

# 6: List all the polynomials of degree 2 in Z2[x]. Which of these are equal as
functions from Z2 to Z2?

If f(x) is to have degree 2 in Z2[x] then its leading term must be x2. The linear and constant
terms can have coefficient 0 or 1, so there are 4 total options. The options are x2, x2 + 1,
x2 + x, and x2 + x+ 1.

Now, to determine which are equal as functions, I simply need to observe the behavior
of each polynomial on the elements of Z2. If they send the elements to the same place, then
they are equal as functions. For x2: 0 7→ 0, 1 7→ 1. For x2 + 1: 0 7→ 1, 1 7→ 0. For x2 + x:
0 7→ 0, 1 7→ 0. For x2 + x + 1: 0 7→ 1, 1 7→ 1. Since none of these send both 0 and 1 to the
same place, they are all distinct as functions.

# 10: Let R be a commutative ring. Show that R[x] has a subring isomorphic to
R.

Let R be a commutative ring and consider R[x]. Define φ : R → R[x] by r 7→ r. Clearly φ
is one-to-one and a homomorphism. Now, φ(R) is a subring of R[x] since it is the image of
a homomorphism. Then φ(R) is a subring of R[x] isomorphic to R.

# 11: If φ : R→ S is a ring homomorphism, define φ̄ : R[x]→ S[x] by (anx
n + · · ·+

a1x+ a0)→ φ(an)xn + · · ·+ φ(a0). Show that φ̄ is a ring homomorphism.



Let f(x) = anx
n + an−1x

n−1 + · · · a1x+ a0 and g(x) = bmx
m + bm−1x

m−1 + · · · b1x+ b0 with
f(x), g(x) ∈ R[x]. Let s = max{n,m}. Now, φ̄(f(x) + g(x)) = φ̄((as + bs)x

s + (as−1 +
bs−1)x

s−1 + · · · + (a1 + b1)x + (a0 + b0)) = φ(as + bs)x
s + · · · + φ(a1 + b1)x + φ(a0 + b0)

where ai and bi are in R. But φ is a ring homomorphism from R to S so (i) it splits over
addition and (ii) it yields coefficients in S. So φ̄(f(x) + g(x)) = (φ(an)xn + · · · + φ(a1)x +
φ(a0) + (φ(bm)xm + · · ·+ φ(b1)x+ φ(b0)) = φ̄(f(x)) + φ̄(g(x)). Similarly, you can show that
φ̄ preserves multiplication. Hence it is a ring homomorphism.

# 15: Show that the polynomial 2x + 1 in Z4[x] has a multiplicative inverse in
Z4[x].

Observe that (2x+ 1)(2x+ 1) = 4x2 + 4x+ 1 = 1 so 2x+ 1 is its own inverse.

# 16: Are there any nonconstant polynomials in Z[x] that have multiplicative
inverses? Explain your answers.

No. Note, we argued this intuitively. Here’s a more formal argument. Suppose that f(x) =∑n
i=0 aix

i has a multiplicative inverse g(x) =
∑m

i=0 bix
i. Then f(x)g(x) =

∑n+m
i=0 cix

i = 1.
This implies that c0 = 1 and ck = 0 for all k 6= 0. In particular, c1 = a0b1 + a1b0 = 0. But
a0 = b−10 from c0 = 1. So c1 = b−10 b1 +a1b0 = 0 This implies that b1 = 0 = a1. But induction,
it is clear that ai = bi = 0 for all i 6= 0. Hence, f(x) and g(x) are constant, which is a
contradiction.

# 17: Let p be a prime. Are there any non constant polynomials in Zp[x] that
have multiplicative inverses? Explain your answer.

No, there are not any. Consider f(x)g(x) = (anx
n + · · · a1x + a0)(bmx

m + · · · + b1x + b0) =
anb

mxn+m + · · · + a0b0 and anbm 6= 0. For this to have a multiplicative inverse, each non-
constant term in f(x)g(x) must be 0, but anbm non-zero shows this is not so.

# 19: (Degree Rule) Let D be an integral domain and f(x), g(x) ∈ D[x]. Prove
that deg (f(x)g(x)) = deg f(x) + deg g(x). Show, by example, that for a
commutative ring R it is possible that deg f(x)g(x) < deg f(x) + deg g(x),
where f(x) and g(x) are nonzero elements in R[x].

Let D be an integral domain and f(x), g(x) ∈ D[x]. Suppose that f(x) =
∑n

i=0 aix
i and

g(x) =
∑m

i=0 bix
i so that deg(f(x)) = n and deg(g(x)) = m. We know that f(x)g(x) =∑n+m

i=0 cn+mx
n+m where cn+m = a0b

n+m + a1b
n+m−1 + · · ·+ an+m−1b

1 + an+mb
0. Since the ai

and bj are in an integral domain, aibj 6= 0 when ai 6= 0 and bj 6= 0. In particular, we know
that an and bm are non-zero so anbm 6= 0. Now, all other terms in the sum of cn+m are zero
because either ai has i > n or bj has j > m. Thus cn+m = anbm. Thus, cn+m is not zero and
the deg(f(x)g(x)) = n+m.



# 20: Prove that the ideal < x > in Q[x] is maximal.

First, let’s look at Q[x]/ < x >. This quotient ring contains cosets that look like a+ < x >
where a ∈ Q. Thus, using the map Q[x]/ < x >→ Q defined by a+ < x >= a is an isomor-
phism. Thus Q[x]/ < x >≈ Q. Now, Q is a field so < x > is maximal.

# 28: Let f(x) ∈ R[x]. Suppose that f(a) = 0 but f ′(a) 6= 0 where f ′(x) is the
derivative of f(x). Show that a is a zero of f(x) of multiplicity 1.

Clearly, f(x) has a as a zero with multiplicity of at least 1. Suppose that it has multiplicity
k > 1. Then f(x) = (x−a)kg(x) for some g(x). So f ′(x) = k(x−a)k−1g(x)+(x−a)kg′(x) =
(x− a)k−1(kg(x) + (x− a)g′(x)). Now, k > 1 implies that k − 1 ≥ 1. So f ′(a) = 0, which is
a contradiction.

# 50: Let R be a ring and x be an indeterminate. Prove that the rings R[x] and
R[x2] are ring-isomorphic.

Let R be a ring and x be an indeterminate. Consider the rings R[x] and R[x2]. To show
that they are isomorphic, let φ : R[x] → R[x2] be defined by f(x) 7→ f(x2). We see that
addition is preserved since φ(f(x) + g(x)) = φ((f + g)(x)) = (f + g)(x2) = f(x2) + g(x2) =
φ(f(x)) + φ(g(x)). Similarly, it is clear that multiplication is preserved. This is one-to-one
since kerφ = {f(x)|f(x2) = 0} = {0}, and onto is also straightforward to show.

# 56: For any field F recall that F (x) denotes the field of quotients of the ring
F [x]. Prove that there is no element in F (x) whose square is x.

Suppose that there is an element in F (x) whose square is x. Then

(
f(x)

g(x)

)2

= x. WLOG,

assume that f(x) and g(x) have no common factors (so that the quotient is already in

reduced form). Then

(
f(x)

g(x)

)2

=
(f(x))2

(g(x))2
= x. So (f(x))2 = x(g(x))2. Hence, (f(0))2 = 0

so f(0) = 0. This means that x|f(x). So f(x) = xh(x) for some h(x). Plugging this
in, we have that (xh(x))2 = x(g(x))2 so x(h(x))2 = (g(x))2. Using the same argument as
before, g(0) = 0 and x|g(x). Therefore f(x) and g(x) have x as a common factor, which is
a contradiction.


