
Solution Outlines for Chapter 17

# 2: Suppose that D is an integral domain and F is a field containing D. If
f(x) ∈ D[x] and f(x) is irreducible over F but reducible over D, what can
you say about the factorization of f(x) over D?

Suppose that f(x) is reducible over D. Then f(x) = g(x)h(x) for some g(x), h(x) ∈ D[x].
Now, all elements of D are in F , so f(x) = g(x)h(x) in F [x]. But since f(x) is irreducible,
g(x) or h(x) is a unit in F . So f(x) = ag(x) for some g(x) and some a ∈ D that is not a
unit in D but is a unit in F .

# 8: Suppose that f(x) ∈ Zp[x] and f(x) is irreducible over Zp where p is a prime.
If deg(f(x)) = n, prove that Zp[x]/ < f(x) > is a field with pn elements.

Since f(x) is irreducible, < f(x) > is maximal and Zp[x]/ < f(x) > is a field. Now since
the degree of f(x) is n, every element in Zp[x]/ < f(x) > can be written as an−1x

n−1 +
an−2x

n−2 + · · ·+ a1x+ a0+ < f(x) >. [Not sure why the previous statement is true? Recall
that for any polynomial g(x) in Zp[x], g(x) = f(x)q(x) + r(x) where the degree of r(x) is
less than the degree of f(x) or r(x) = 0. So g(x)+ < f(x) >= f(x)q(x) + r(x)+ < f(x) >=
r(x)+ < f(x) >.] Since each ai is in Zp, there are p options for each coefficient in the coset
representative. So there are p×p×· · ·×p = pn possible standard representatives. Moreover,
it is clear that each is unique.

# 9: Construct a field of order 25.

Since 25 = 52, start with Z5[x]. Now, we must find a degree 2 polynomial, p(x), that is
irreducible over Z5. Then Z5[x]/ < p(x) > is a field of order 5*5 = 25. Now, lets start with
p(x) = x2 + x+ a. Then p(0) = a, p(1) = a+ 2, p(2) = a+ 1, p(3) = 2 + a, and p(4) = a. So
a 6= 0, 3, 4. Choose a = 1. Then p(x) = x2 + x + 1 is irreducible over Z5 and works to give
us the field we want.

# 12: Determine which of the polynomials below is (are) irreducible over Q.

a. x5 + 9x4 + 12x2 + 6: Irreducible. Use Eisenstein’s with p = 3.

b. x4 +x+ 1: Irreducible. In Z2[x] this polynomial is f(x) = x4 +x+ 1 (notice the degree
is preserved). Now f(0) = 1 and f(1) = 1 so f(x) is irreducible over Z2 and thus over
Q. Alternately, the rational roots theorem tells us ±1 are the only possible rational
roots and neither works.

c. x4 + 3x2 + 3: Irreducible. Use Eisenstein’s with p = 3.

d. x5 + 5x2 + 1: Irreducible. In Z2[x] this polynomial is f(x) = x5 + x2 + 1 (notice the
degree is preserved). Now f(0) = 1 and f(1) = 1 so f(x) is irreducible over Z2 and
thus over Q. Alternately, the rational roots theorem tells us ±1 are the only possible
rational roots and neither works.



e. (5
2
)x5 + (9

2
)x4 + 15x3 + (3

7
)x2 + 6x + 3

14
: Irreducible. Call the polynomial f(x). Then

14f(x) = 35x5+63x4+105x3+6x2+84x+3. Now 14f(x) is irreducible by Eisenstein’s
with p = 3. Hence f(x) is irreducible.

# 15: Let f(x) = x3 +6 ∈ Z7[x]. Write f(x) as a product of irreducible polynomials
over Z7.

Since the degree of f(x) is 3, any factor must correspond to a 0. So f(0) = 3, f(1) = 0,
f(2) = 0, f(3) = 5, f(4) = 0, f(5) = 5, f(6) = 5. So f(x) = (x − 1)(x − 2)(x − 4) =
(x+6)(x+5)(x+3). (Notice that each root occurs with multiplicity 1 because of the degree.)

# 19: Show that for every prime p there exists a field of order p2.

Let’s think about Zp[x]. By exercise 18/17 (these are fundamentally the same problem),
there is a degree 2 polynomial that is irreducible over Zp, say f(x). Thus Zp[x]/ < f(x) > is
a field of order p2 or less (see exercise 9 if you don’t understand why this is the order). Now
ax + b+ < f(x) >= cx + d+ < f(x) > implies that (a − c)x + (b − d) is divisible by f(x).
This means that a = c and b = d. Thus the order is precisely p2.

# 20: Prove that, for every positive integer n, there are infinitely many polyno-
mials of degree n in Z[x] that are irreducible over Q.

Fix n. Consider the infinite class of polynomials of order xn + p where p is a prime. Then,
by Eisenstein’s, xn + p is irreducible over Q.

# 21: Show that the field given in Example 11 in this chapter is isomorphic to
the field given in Example 9 in Chapter 13.

The example 11 field is: Z3[x]/ < x2 + 1 >. The example 9 field is: Z3[i]. Define φ : Z3[x]/ <
x2+1 >→ Z3[i] by φ(f(x)+ < x2+1 >) = f(i). Then φ(f(x)+ < x2+1 > +g(x)+ < x2+1 >
) = φ(f(x) + g(x)+ < x2 + 1 >) = f(i) + g(i) = φ(f(x)+ < x2 + 1 >) +φ(g(x)+ < x2 + 1 >)
and φ((f(x)+ < x2 + 1 >)(g(x)+ < x2 + 1 >)) = φ(f(x)g(x)+ < x2 + 1 >) = f(i)g(i) =
φ(f(x)+ < x2 + 1 >)φ(g(x)+ < x2 + 1 >). Thus φ is a homomorphism. Now, kerφ =
{f(x)+ < x2+1 > |f(i) = 0} = {ax+b+ < x2+1 > |ai+b = 0 where a, b ∈ Z3} =< x2+1 >
so φ is 1-1. Now let a + bi ∈ Z3[i]. Then a + bx+ < x2 + 1 > maps to a + bi so φ is onto.
Thus, these fields are isomorphic.

# 23: Find all monic irreducible polynomials of degree 2 over Z3.

So this means that the polynomial must look like x2 + ax + b where b 6= 0. Suppose b = 1.
Then x2 + ax + 1 = f(x). Then f(0) = 1, f(1) = a + 2, and f(2) = 2 + 2a. So a 6= 1, 2.
Thus x2 + 1 is irreducible. Now suppose b = 2. Then f(x) = x2 + ax + 2. So f(0) = 2,
f(1) = a, and f(2) = 2a. Thus a 6= 0 So x2 + x + 2 and x2 + 2x + 2 are irreducible. Final
answer: x2 + 1, x2 + x+ 2, x2 + 2x+ 2.



# 24: Given that π is not the zero of a nonzero polynomial with rational coeffi-
cients, prove that π2 cannot be written in the form aπ + b, where a and b
are rational.

Suppose that π2 can be written as aπ + b. Then set g(x) = x2 − ax − b. So g(π) =
π2 − aπ − b = aπ + b − aπ − b = 0 so π is a zero of a nonzero polynomial with rational
coefficients, which is a contradiction.

# 26: Find all zeros of f(x) = 3x2 + x + 4 over Z7 by substitution. Find all zeros
of f(x) by using the quadratic formula. Do your answers agree? Should
they? Find all zeros of g(x) = 2x2 + x + 3 over Z5 by substitution. Try
the quadratic formula on g(x). Do your answers agree? State necessary
and sufficient conditions for the quadratic formula to yield the zeros of a
quadratic from Zp[x], where p is a prime greater than 2.

Using substitution we see f(4) = 0 = f(5) so the roots are 4 and 5 Using the quadratic
formula, we have (−1±

√
−47)(6)−1 = (6±

√
2)(6) = (6± 3)(6) = 4, 5.

Now for g(x), we see by substitution that there are no zeros in Z5. Using the quadratic
formula, we have (−1±

√
2)(2−1) but no number in Z5 squares to 5, so there are no solutions.

Since every number has a multiplicative inverse in Zp, the only problem occurs when b2−4ac
is not a square. Thus there are zeros in Zp when b2 − 4ac = d2 for some d ∈ Zp.

# 31: Let F be a field and let p(x) be irreducible over F . If E is a field that
contains F and there is an element a in E such that p(a) = 0, show that the
mapping φ : F [x] → E given by f(x) → f(a) is a ring homomorphism with
kernel < p(x) >.

Let φ, F , p(x), E and a be defined as above. Then φ(f(x) + g(x)) = f(a) + g(a) =
φ(f(x)) + φ(g(x)) and φ(f(x)g(x)) = f(a)g(a) = φ(f(x))φ(g(x)). Clearly p(x) is in the
kernel of φ. Moreover, since p(x) is irreducible, < p(x) > is a maximal ideal. So that means
that the kernel of φ is precisely < p(x) >.


