Solution Outlines for Chapter 17

# 2: Suppose that D is an integral domain and F' is a field containing D. If
f(z) € D[z] and f(x) is irreducible over F' but reducible over D, what can
you say about the factorization of f(x) over D?

Suppose that f(z) is reducible over D. Then f(z) = g(x)h(z) for some g(z), h(z) € D[z].
Now, all elements of D are in F', so f(x) = g(x)h(x) in F|z]. But since f(z) is irreducible,
g(x) or h(x) is a unit in F. So f(x) = ag(z) for some g(z) and some a € D that is not a
unit in D but is a unit in F\

# 8: Suppose that f(x) € z,[z] and f(z) is irreducible over 7z, where p is a prime.
If deg(f(x)) = n, prove that z,[z|/ < f(x) > is a field with p" elements.

Since f(x) is irreducible, < f(x) > is maximal and Z,[z]/ < f(x) > is a field. Now since
the degree of f(z) is n, every element in Z,[z]/ < f(z) > can be written as a,_jz"" ' +
Aot 2+ -+ arz+apt+ < f(z) >. [Not sure why the previous statement is true? Recall
that for any polynomial g(x) in Z,[z], g(x) = f(x)q(x) 4+ r(x) where the degree of r(z) is
less than the degree of f(x) or r(z) = 0. So g(z)+ < f(x) >= f(z)q(z) +r(x)+ < f(z) >=
r(z)+ < f(x) >.] Since each q; is in Z,, there are p options for each coefficient in the coset
representative. So there are p x p x --- X p = p” possible standard representatives. Moreover,
it is clear that each is unique.

# 9: Construct a field of order 25.

Since 25 = 5%, start with Zs[z]. Now, we must find a degree 2 polynomial, p(z), that is
irreducible over Zs. Then Zs[z]/ < p(z) > is a field of order 5*5 = 25. Now, lets start with
p(r) =2? +x+a. Then p(0) =a, p(1) =a+2,p(2) =a+1, p(3) =2+a, and p(4) = a. So
a #0,3,4. Choose a = 1. Then p(z) = 2% + x + 1 is irreducible over Zs and works to give
us the field we want.

# 12: Determine which of the polynomials below is (are) irreducible over Q.

a. 2° 4+ 92* + 1222 + 6: Irreducible. Use Eisenstein’s with p = 3.

b. 2%+ 2+ 1: Irreducible. In Zy[z] this polynomial is f(z) = 2%+ 2+ 1 (notice the degree
is preserved). Now f(0) =1 and f(1) =1 so f(x) is irreducible over Z; and thus over
Q. Alternately, the rational roots theorem tells us +1 are the only possible rational
roots and neither works.

c. 2t + 322 + 3: Irreducible. Use Eisenstein’s with p = 3.

d. z° + 5z* + 1: Irreducible. In Zy[z] this polynomial is f(x) = x° + 2% + 1 (notice the
degree is preserved). Now f(0) = 1 and f(1) = 1 so f(z) is irreducible over Z; and
thus over Q. Alternately, the rational roots theorem tells us +1 are the only possible
rational roots and neither works.



e. (5)2° + ()2 + 152% 4 (2)2? + 62 + £;: Irreducible. Call the polynomial f(x). Then
14f(x) = 352°+ 6321 +1052% + 62% + 841+ 3. Now 14 f(z) is irreducible by Eisenstein’s
with p = 3. Hence f(x) is irreducible.

# 15: Let f(x) = 2 +6 € Z;[z]. Write f(z) as a product of irreducible polynomials
over Z.

Since the degree of f(x) is 3, any factor must correspond to a 0. So f(0) = 3, f(1) = 0,

f2) =0, f(3) = 5, f(4) = 0, f(5) = 5, f(6) = 5. So f(z) = (z — N)(z - 2)(x —4) =
(x+6)(z+5)(z+3). (Notice that each root occurs with multiplicity 1 because of the degree.)

# 19: Show that for every prime p there exists a field of order p?.

Let’s think about Z,[z]. By exercise 18/17 (these are fundamentally the same problem),
there is a degree 2 polynomial that is irreducible over Z,, say f(z). Thus Z,[z]/ < f(z) > is
a field of order p? or less (see exercise 9 if you don’t understand why this is the order). Now
ar + b+ < f(x) >= cx + d+ < f(x) > implies that (a — ¢)z + (b — d) is divisible by f(z).
This means that a = ¢ and b = d. Thus the order is precisely p?.

# 20: Prove that, for every positive integer n, there are infinitely many polyno-
mials of degree n in Z[z] that are irreducible over Q.

Fix n. Consider the infinite class of polynomials of order x™ + p where p is a prime. Then,
by Eisenstein’s, 2™ + p is irreducible over Q.

: Show tha e field given in Example in this chapter is isomorphic to
21: Show that the field gi in E le 11 in this chapter is i hic t
the field given in Example 9 in Chapter 13.

The example 11 field is: Z3[z]/ < 22+ 1 >. The example 9 field is: Z3[i]. Define ¢ : Z3[z]/
2241 >— 23[i] by o(f(2)+ < 2241 >) = f(i). Then ¢(f(x)+ < 2?+1 > +g(z)+ < 22+1
) =o(f(z) +g(x)+ <2?+1>) = f(i) +9(i) = ¢(f(2)+ <2 +1 >)+¢(g(x)+ <2®+1 >
and O((f(x)+ < 2+ 1 >)(g(e)+ < 2 + 1 >)) = p(f(@)g(a)+ < 2 +1>) = f(i)g(i)
O(f(x)+ < 22+ 1 >)o(g(x)+ < 22 +1 >). Thus ¢ is a homomorphism. Now, ker¢ =
{f(x)+ < 2*4+1 > |f(i) = 0} = {az+b+ < 2®+1 > |ai+b = 0 where a,b € Z3} =< 2241 >
so ¢ is 1-1. Now let a + bi € Z3[i]. Then a + bz+ < 2? + 1 > maps to a + bi so ¢ is onto.
Thus, these fields are isomorphic.

<V A

# 23: Find all monic irreducible polynomials of degree 2 over Zs.

So this means that the polynomial must look like z2 + ax + b where b # 0. Suppose b = 1.
Then 22 + ax +1 = f(x). Then f(0) =1, f(1) = a+2, and f(2) = 2+ 2a. So a # 1,2.
Thus 22 + 1 is irreducible. Now suppose b = 2. Then f(z) = 2? + ax + 2. So f(0) = 2,
f(1) = a, and f(2) = 2a. Thus a # 0 So 2% + = + 2 and 2% + 2z + 2 are irreducible. Final
answer: 224+ 1, 2?2 +x + 2, 22 4+ 22 + 2.



# 24: Given that 7 is not the zero of a nonzero polynomial with rational coeffi-
cients, prove that 7% cannot be written in the form ar + b, where a and b
are rational.

Suppose that 72 can be written as ar + b. Then set g(z) = 2°> —ax — b. So g(7) =

m —ar —b=ar+b—ar —b=0so 7w is a zero of a nonzero polynomial with rational

coefficients, which is a contradiction.

# 26: Find all zeros of f(z) = 3z? + z + 4 over Z; by substitution. Find all zeros
of f(z) by using the quadratic formula. Do your answers agree? Should
they? Find all zeros of g(x) = 222 + x + 3 over Zs; by substitution. Try
the quadratic formula on g(x). Do your answers agree? State necessary
and sufficient conditions for the quadratic formula to yield the zeros of a
quadratic from z,[z], where p is a prime greater than 2.

Using substitution we see f(4) = 0 = f(5) so the roots are 4 and 5 Using the quadratic
formula, we have (—1 4 +/—47)(6)~' = (6 = /2)(6) = (6 + 3)(6) = 4, 5.

Now for g(z), we see by substitution that there are no zeros in Zs. Using the quadratic
formula, we have (—1++/2)(27!) but no number in Z; squares to 5, so there are no solutions.

Since every number has a multiplicative inverse in Z,, the only problem occurs when b% —4ac
is not a square. Thus there are zeros in 7, when b* — 4dac = d? for some d € Z,,.

# 31: Let F' be a field and let p(x) be irreducible over F. If E is a field that
contains F' and there is an element « in F such that p(a) = 0, show that the
mapping ¢ : Flz] — E given by f(x) — f(a) is a ring homomorphism with
kernel < p(x) >.

Let ¢, F, p(z), E and a be defined as above. Then ¢(f(x) + g(x)) = f(a) + g(a) =

o(f(x)) + o(g(x)) and o(f(x)g(x)) = fla)g(a) = o(f(x))¢(g(x)). Clearly p(z) is in the

kernel of ¢. Moreover, since p(z) is irreducible, < p(z) > is a maximal ideal. So that means

that the kernel of ¢ is precisely < p(x) >.



