
Solution Outlines for Chapter 20

# 1: Describe the elements of Q( 3
√

5).

Q(5
1
3 ) = {a+ b5

1
3 + c5

2
3 |a, b, c ∈ Q}

# 3: Find the splitting field of x3 − 1 over Q. Express your answer in the form
Q(a).

First, notice that x3 − 1 = (x − 1)(x2 + x + 1) (see cyclotomic polynomials from class).
So the roots of x3−1 are 1 and (−1±

√
−3)/2). Notice that 1 is already in Q. By arguments

like those in class, we see that we get −(1±
√
−3)/2 by simply adjoining

√
−3. So Q(

√
−3)

is the splitting field.

# 6: Let a, b ∈ R with b 6= 0. Show that R(a+ bi) = C.

It is clear that R(a + bi) ⊆ C. Now to see that C ⊆ R(a + bi), I only need to show that
i ∈ R(a + bi) (note: it is clear that R is there so getting i gives us all of C). We see that
i = b−1(a+ bi)− b−1a which is a real number times (a+ bi) plus a real number and so it is
an element of R(a+ bi). Thus we have equality.

# 7: Find a polynomial p(x) in Q[x] such that Q(
√

1 +
√

5) is ring isomorphic to
Q[x]/ < p(x) >.

I need a polynomial so that it has rational coefficients, it is irreducible over Q and root√
1 +
√

5 (Technically, we are using Theorem 20.3 that we haven’t done yet). So I want

f(x) such that f(x) = 0 gives x =
√

1 +
√

5. This implies that x2 = 1+
√

5, or x2−1 =
√

5.
So x4 − 2x2 + 1 = 5 or x4 − 2x2 − 4 = 0. Let p(x) = x4 − 2x2 − 4. Then p(x) is in Q[x] and
has the needed root. Additionally, it is irreducible over Q (simply check in Z3).

# 20: Let F be a field, and let a and b belong to F with a 6= 0. If c belongs to
some extension of F , prove that F (c) = F (ac + b). (F “absorbs” its own
elements.)

This is akin to exercise 6. First, it is clear that ac + b ∈ F (c) so F (ac + b) ⊆ F (c).
Now, c = a−1(ac+ b)− a−1b so F (c) ⊆ F (ac+ b) and we are done.

# 21: Let f(x) ∈ F [x] and let a ∈ F . Show that f(x) and f(x + a) have the same
splitting field over F .

Suppose that the zeros of f(x) are a1, a2, . . . ak. Then the roots of f(x+ a) are a1 − a, . . .,
ak−a. So by application of exercise 20 (up to k times), the splitting field F (a1, a2, . . . , ak) =
F (a1 − a, . . . ak − a) and the splitting fields are the same.

# 23: Determine all of the subfields of Q(
√

2).

First notice that Q and Q(
√

2) are subfields. Now suppose we have another subfield, K.
K must contain Q and some element a+ b

√
2 where b 6= 0. Now, K must contain Q(a+ b

√
2)



but by exercise 20 this is just Q(
√

2). So those are the only two subfields.

# 27: Prove or disprove that Q(
√

3) and Q(
√
−3) are ring isomorphic.

Suppose that there is some map φ that is a ring isomorphism from Q(
√
−3) to Q(

√
3).

Then φ(1) = 1 so φ(−3) = −3 (as we’ve seen before). So −3 = φ(−3) = φ(
√
−3
√
−3) =

(φ(
√
−3))2. But this is a contradiction since φ(

√
−3) is a real number. Hence, no such

isomorphism exists.

# 38: Show that Q(
√

7, i) is the splitting field for x4 − 6x2 − 7 (over Q).

First we need to factor x4 − 6x2 − 7. We see that it factors to (x2 − 7)(x2 + 1). Hence
the roots are ±

√
7 and ±i. Notice that adjoining

√
7 gives us −

√
7 for free. Similarly,

adjoining i also gives us −i. So the splitting field is Q(
√

7, i).


