
Solution Outlines for Chapter 6

# 1: Find an isomorphism from the group of integers under addition to the
group of even integers under addition.

Let φ : Z → 2Z be defined by x 7→ x + x = 2x. Then φ(x + y) = 2(x + y) = 2x + 2y =
φ(x) + φ(y), so φ is a homomorphism. Now, φ(x) = φ(y) if and only if 2x = 2y, which holds
if and only if x = y. Thus φ is one-to-one. Finally, let y ∈ 2Z. Then y = 2k for some k ∈ Z.
Since k ∈ Z and φ(k) = 2k = y, φ is onto.

# 3: Let R+ be the group of positive real numbers under multiplication. Show
that the mapping φ(x) =

√
x is an automorphism of R+.

Let φ : R+ → R+ be defined by φ(x) =
√
x. Since

√
x will be in the positive re-

als, and the positive reals is an appropriate domain for φ, φ is an automorphism. Now,
φ(xy) =

√
xy =

√
x
√
y = φ(x)φ(y), so φ is a homomorphism. Notice that Ker φ =

{x
∣∣√x = 1} = {1}, so φ is one to one. Finally, let y ∈ R+. Then y2 = x is also in R+.

Moreover, φ(x) = φ(y2) =
√
y2 = y, so φ is onto.

# 4: Show that U(8) is not isomorphic to U(10).

Observe that U(10) is cyclic while U(8) is not.

# 5: Show that U(8) is isomorphic to U(10).

First notice that U(8) = {1, 3, 5, 7}, U(12) = {1, 5, 7, 11} and all elements of both U(8)
and U(12) square to the identity. Let φ be defined by φ(1) = 1, φ(3) = 5, φ(5) = 7, and
φ(7) = 11. You can check the multiplications of φ(1a), φ(3 ·5), φ(3 ·7) and φ(5 ·7) in order to
see that φ indeed is a homomorphism. It is clear by construction that φ is onto and one to one.

# 6: Prove that isomorphism is an equivalence relation.

Proof. To show that isomorphism is an equivalence relation, I must show reflexive, symmetric
and transitive. First, notice that G ≈ G by the identity map. Thus the isomorphism relation
is reflexive. Suppose that G ≈ H. Then there exists an isomorphism φ : G → H. But this
implies that φ−1 : H → G is also an isomorphism. ThusH ≈ G and the relation is symmetric.
Finally, supposes that G ≈ H and H ≈ K. Then there exist two isomorphisms: φ : G→ H
and σ : H → K. Then σφ : G→ k is also an isomorphism (you have previously shown that
the composition of bijections is a bijection; you should argue that the composition is still a
homomorphism if you have not done so yet). Thus, the relation is transitive.

# 10: Let G be a group. Prove that the mapping α(g) = g−1 for all g in G is an
automorphism if and only if G is Abelian.

Define α as above. Suppose that α is an automorphism. Then α(ab) = α(a)α(b) for
all a, b ∈ G. This implies that (ab)−1 = a−1b−1. But this means that b−1a−1 = a−1b−1



and multiplying we see that ab = ba. Now suppose instead that G is Abelian. Then re-
versing the previous argument shows that α must be a homomorphism. The kernel of α is
{g|g−1 = e} = {e} so α is one-to-one. Finally, let a ∈ G. Then a−1 is also in G since G is a
group. Moreover, α(a−1) = (a−1)−1 = a so α is onto. (Note: You should recognize most of
this problem from an earlier chapter).

# 11: If g and h are elements from a group, prove that φgφh = φgh.

Proof. Let x ∈ G. Then (φgφh)(x) = φg(φh(x)) = φg(hxh
−1) = ghxh−1g−1 = (gh)x(gh)−1 =

φgh(x). Thus, φgφh = φgh.

# 12: Find two groups G and H such that G 6≈ H, but Aut(G) ≈ Aut(H).

Consider G = Z6 and H = Z3. Since |Z6| 6= |Z3|, G 6≈ H. But
Aut(Z6) ≈ U(6) = {1, 5} =< 5 >≈ Z2 and Aut(Z3) ≈ U(3) = {1, 2} =< 2 >≈ Z2. Thus
Aut(G) ≈ Aut(H).

# 14: Find Aut(Z6).

As above, Aut(Z6) ≈ U(6) =< 5 >≈ Z2. Thus there are only two elements in Aut(Z6).
Clearly one is the identity map. Also, since the inverse map is an automorphism, this must
be the second map. Thus Aut(Z6) ≈ {id, φ} where φ(g) = −g.

Alternately: The generators of Z6 are 1 and 5. Thus Aut(Z6) = {φ1, φ5} where φi is
defined as the map that sends 1 to i. Since φ1(1) = 1, φ1 is just the identity. Similarly, we
can see that φ5(1) = 5 implies that 2 maps to 4 and 3 maps to 3. Thus φ5 is the inverse
map that sends g to −g.

# 15: If G is a group, prove that Aut(G) and Inn(G) are groups.

Proof. Clearly both Aut(G) and Inn(G) are associative because function composition is
associative. Now consider φ1, φ2 ∈ Aut(G). Since the composition of an isomorphism is
an isomorphism (if you don’t remember this, prove it to yourself), φ1φ2 ∈ Aut(G), giving
closure. Let φe be the automorphism defined by φe(x) = x. Then φ1φe(x) = φ1(x) = φeφ1(x)
so this is the identity map. Finally, by Theorem 6.1, property 1, we know that the inverse
of an isomorphism is also an isomorphism, thus Aut(G) contains inverses. This completes
the proof that Aut(G) is a group.

Now, let φg, φh ∈ Inn(G). By homework problem 11, we know that φgφh ∈ Inn(G) so it
is closed. Using the same calculation (in problem 11), φgφe = φge = φg = φeg = φeφg, so
the group identity is indeed φe, which is in Inn(G). Similarly, we see φgφg−1 = φgg−1 = φe =
φg−1g = φg−1φg and inverses exist in Inn(G). Thus Inn(G) is also a group.

# 20: Show that Z has infinitely many subgroups isomorphic to Z.

Consider aZ where a ∈ Z. If a = ±1, aZ = Z, and if a = 0, aZ = {0}. For
all other a, aZ is a proper, non-trivial subgroup of Z (as shown previously). Consider



φ : aZ → Z defined by az 7→ z (Note: φ clearly maps to Z by construction). Then
φ(az1 + az2) = φ(a(z1 + z2)) = z1 + z2 = φ(az1) + φ(az2), so φ is a homomorphism. Now,
φ(az1) = φ(az2) implies that z1 = z2. But, since a = a, this means az1 = az2 thus φ is one
to one. Finally, for any z ∈ Z, az ∈ aZ thus our map is onto. Since there are an infinite
number of a 6= −1, 0, 1, there are an infinite number of subgroups isomorphic to Z.

# 35: Show that the mapping φ(a+bi) = a−bi is an automorphism of the group of
complex numbers under addition. Show that φ preserves complex multiplication
as well.

First, we show φ is a homomorphism: φ((a+ bi) + (c+ di)) = φ((a+ c) + (b+ d)i) = (a+
c)−(b+d)i = (a−bi)+(c−di) = φ(a+bi)+φ(c+di). Now suppose that φ(a+bi) = φ(c+di).
Then a−bi = c−di. But this implies that a = c and b = d. Hence, a+bi = c+di, and φ is 1-1.
Finally, let a+bi be any element of C. Then a−bi is also in C and φ(a−bi) = a−(−b)i = a+bi.
Thus φ is onto.

We see that φ also preserves multiplication since φ((a+ bi)(c+di)) = φ((ac− bd) + (ad+
bc)i) = (ac − bd) − (ad + bc)i, which is the same as φ(a + bi)φ(c + di) = (a − bi)(c − di) =
(ac− bd)− (bc+ ad).

# 36: Let G = {a + b
√

2
∣∣a, b are rational} and H =

{[
a 2b
b a

] ∣∣a, b are rational

}
.

Show that G and H are isomorphic under addition. Prove that G and H are
closed under multiplication. Does your isomorphism preserve multiplication as
well as addition?

To show G is isomorphic to H under addition, define φ : G→ H by the map a+ b
√

2 7→[
a 2b
b a

]
. Then φ(a + b

√
2 + c + d

√
2) = φ((a + c) + (b + d)

√
2) =

[
a+ c 2b+ 2d
b+ d a+ c

]
=[

a 2b
b a

]
+

[
c 2d
d c

]
= φ(a+ b

√
2) + φ(c+ d

√
2). It is clear that φ is onto since

[
a 2b
b a

]
is mapped to by a + b

√
2 and in both cases a, b ∈ Q. Finally we see that φ is onto since

Ker φ =

{
a+ b

√
2|
[
a 2b
b a

]
=

[
0 0
0 0

]}
= {a+ b

√
2|a = 0 = b} = {0}.

Because (a+b
√

2)(c+d
√

2) = (ac+2bd)+(bc+ad)
√

2 and the rationals are closed under
multiplication, G is closed under multiplication. We similarly see that H is closed under mul-

tiplication:

[
a 2b
b a

] [
c 2d
d c

]
=

[
ac+ 2bd 2ad+ 2bd
bc+ ad 2bd+ ac

]
=

[
(ac+ 2bd) 2(ad+ bc)
(ad+ bc) (ac+ 2bd)

]
.

Finally, we also see that φ preserves multiplication since φ((a + b
√

2)(c + d
√

2)) =

φ((ac + 2bd) + (bc + ad)
√

2) =

[
ac+ 2bd 2(bc+ ad)
bc+ ad ac+ 2bd

]
=

[
a 2b
b a

] [
c 2d
d c

]
= φ(a +

b
√

2)φ(c+ d
√

2).

# 37: Prove that Z under addition is not isomorphic to Q under addition.



The proof is simply that Z is cyclic while Q is not cyclic. We have already shown Z =< 1 >
but, for completeness, we should argue that Q is not cyclic. Assume that it is cyclic. Then
Q =< p

q
> for some reduced rational (note: p, q ∈ Z). But p

2q
6= (p

q
)i for any i [there is one

case q = 2 that has to be considered separate, but clearly Q is not generated by p
2

since you
can’t get a third]. But this means that p

2q
6∈ Q, which is a contradiction.

# 40: Let Rn = {(a1, a2, . . . , an)|ai ∈ R}. Show that the mapping φ : (a1, a2, . . . , an)→
(−a1,−a2, . . . ,−an) is an automorphism of the group Rn under component wise
addition. This automorphism is called inversion. Describe the action of φ geo-
metrically.

Clearly, (a1, a2, . . . , an) ∈ Rn implies that (−a1,−a2, . . . ,−an) is also in Rn, thus φ : Rn →
Rn. Now, φ((a1, a2, . . . , an) + (b1, b2, . . . , bn)) = φ((a1 + b1, a2 + b2, . . . , an + bn)) = (−(a1 +
b1),−(a2 + b2), . . . ,−(an + bn)) = (−a1− b1,−a2− b2, . . . ,−an− bn) = (−a1,−a2, . . . ,−an)+
(−b1,−b2, . . . ,−bn) = φ((a1, a2, . . . , an)) + φ((b1, b2, . . . , bn)). thus φ is a homomorphism.
The kerφ = {(a1, a2, . . . , an)

∣∣(−a1,−a2, . . . ,−an) = (0, 0, . . . , 0)} = {(a1, a2, . . . , an)
∣∣− ai =

0∀i} = {(a1, a2, . . . , an)
∣∣ai = 0∀i} = {(0, 0, . . . , 0)}. Thus, φ is one-to-one. Finally, we need

to show φ is onto. Let (a1, a2, . . . , an) ∈ Rn. Then (−a1,−a2, . . . ,−an) is also in R and
φ((−a1,−a2, . . . ,−an)) = (a1, a2, . . . , an).

Geometrically, this is a reflection through the origin.

# 42: Suppose that G is a finite Abelian group and G has no element of order 2.
Show that the mapping g → g2 is an automorphism of G. Show, by example, that
there is an infinite Abelian group for which the mapping g → g2 is one-to-one
and operation-preserving but not an automorphism.

Since G is closed under the operation, g2 ∈ G for all g ∈ G. Thus φ, defined as above,
maps G to G. Now, for g, h ∈ G, φ(gh) = (gh)2 = g2h2 = φ(g)φ(h) so φ is a homomorphism.
[Recall, (gh)2 = g2h2 because G is Abelian.] Let φ(g) = φ(h). Then g2 = h2, which implies
g2h−2 = (gh−1)2 = e. Since G has no elements of order two, this means that gh−1 = e so
g = h and φ is one-to-one. [Alternatively, kerφ = {g|g2 = e} = {g|g = e} = {e} since there
are no elements of order 2.] Since G is finite and φ is one-to-one, we know φ is onto. Thus
φ is an automorphism.

Let G = Z≥0. Then φ is still 1-1 and a homomorphism. However, φ is not onto. For
example, nothing maps to 3. Thus φ is not an automorphism.

# 43: Let G be a group and let g ∈ G. If z ∈ Z(G), show that the inner automor-
phism induced by g is the same as the inner automorphism induced by zg.

Let g ∈ G and z ∈ Z(G). Then φzg(x) = (zg)x(zg)−1 = zgxg−1z−1 = zz−1gxg−1. This
last step is true because z is in the center, and the center is a group so z−1 is also in the
center. Now zz−1gxg−1 = gxg−1 = φg(x).

# 45: Suppose that g and h induce the same inner automorphism of a group G.
Prove that h−1g ∈ Z(G).



Proof. Suppose that g and h induce the same inner automorphism of a group G. Then for
all x ∈ G, φg(x) = φh(x). Hence, gxg−1 = hxh−1. Multiplying on the right of each side of
the equation by g, we have gx = hxh−1g. Now we multiply each side on the left by h−1. this
gives h−1gx = xh−1g. Thus h−1g commutes with x for all x ∈ G so h−1g ∈ Z(G).

# 48: Let φ be an isomorphism from a group G to a group G and let a belong
to G. Prove that φ(C(a)) = C(φ(a)).

We know that ab = ba if and only if φ(a)φ(b) = φ(b)φ(a). Let g ∈ C(a). Then ga = ag
which implies φ(g)φ(a) = φ(a)φ(g). Hence, φ(g) ∈ C(φ(a)), illustrating the first contain-
ment. Now let h ∈ C(φ(a)). Then hφ(a) = φ(a)h. But φ is onto so there exists a g ∈ G
such that h = φ(g). Further, ga = ag because h and φ(a) commute. Thus h ∈ φ(C(a)).
Since both containments hold, φ(C(a)) = C(φ(a)).

# 52: Given a group G, define a new group G∗ that has the same elements as
G with the operation ∗ defined by a ∗ b = ba for all a and b in G∗. Prove that
the mapping from G to G∗ defined by φ(x) = x−1 for all x in G is an isomorphism
from G onto G∗.

Since G∗ contains the same elements of G, and G is closed under inverses, φ maps from
G to G∗. Now for g, h ∈ G, φ(gh) = (gh)−1 = h−1g−1 = φ(h)φ(g) = φ(g) ∗ φ(h). Thus φ
is a homomorphism. The kernel of φ is {g ∈ G|φ(g) = g−1 = e} = {g ∈ G|g−1g = eg} =
{g ∈ G|e = g} = {e}. Hence, φ is also one to one. [Note: If G is finite, we are done
since this implies φ is onto.] Now let h ∈ G∗. Then h−1 ∈ G∗, and hence in G. Farther,
φ(h−1) = (h−1)−1 = h. Thus, φ is onto, which completes the proof that φ is an isomorphism.


