Solution Outlines for Chapter 8

1: Prove that the external direct product of any finite number of groups is a group.

Proof. Let $G = G_1 \oplus G_2 \oplus \cdots \oplus G_n$, where each G_i is a group, and let the operation *on G be defined component wise (as in the definition of external direct product). Since each operation in G_i is associative, * is associative on G. [This is clear since a * (b * c) = $a * (b_1 * c_1, b_2 * c_2, \ldots b_n * c_n) = (a_1 * (b_1 * c_1), a_2 * (b_2 * c_2), \ldots, a_n * (b_n * c_n)) = ((a_1 * b_1) * c_1, (a_2 * b_2) * c_2, \ldots, (a_n * b_n) * c_n) = (a_1 * b_1, a_2 * b_2, \ldots, a_n * b_n) * c = (a * b) * c_1$] Similarly, we can see that G is closed since $a * b = (a_1 * b_1, a_2 * b_2, \ldots, a_n * b_n)$ and $a_i b_i \in G_i$ by closure of G_i . The previous calculation also verifies that the identity in G is $e = (e_1, e_2, \ldots, e_n)$ where e_i is the identity in G_i and that the inverse of a is $a^{-1} = (a_1^{-1}, a_2^{-1}, \ldots, a_n^{-1})$. Since each G_i is a group, both e and a^{-1} is in G.

2: Show that $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ has seven subgroups of order 2.

First notice that any subgroup of order two must be isomorphic to \mathbb{Z}_2 and hence cyclic with an order two generator. Moreover, each subgroup of order two contains one non-identity order two element. Thus the seven subgroups are generated by the seven non-identity order two elements in $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Namely, these groups are:

<(1,0,0)>,<(0,1,0)>,<(0,0,1)>,<(1,1,0)>,<(1,0,1)>,<(0,1,1)>, and <(1,1,1)>.

3: Let G be a group with identity e_G and let H be a group with identity e_H . Prove that G is isomorphic to $G \oplus \{e_H\}$ and that H is isomorphic to $\{e_G\} \oplus H$.

Proof. Define $\phi : G \to G \oplus \{e_H\}$ by $g \mapsto (g, e_H)$. Since $\phi(gh) = (gh, e_H) = (gh, e_He_H) = (g, e_H)(h, e_H) = \phi(g)\phi(h)$, the map ϕ is a homomorphism. The kernel of ϕ is simply $\{g|\phi(g) = (e_G, e_H)\} = \{g|(g, e_H) = (e_G, e_H)\} = \{g|g = e_G\} = \{e_G\}$ so ϕ is one-to-one. Finally, let $y \in G \oplus \{e_H\}$. Then $y = (g, e_H)$ for some $g \in G$ by definition of the external direct product. Hence $\phi(g) = y$ and the map is also onto. Since ϕ is an isomorphism, $G \approx G \oplus \{e_H\}$. Using a similar argument, it is clear that $H \approx \{e_G\} \oplus H$.

4: Show that $G \oplus H$ is Abelian if and only if G and H are Abelian. State the general case.

Let $G \oplus H$ be Abelian. Then xy = yx for all $x, y \in G \oplus H$. By definition of external direct product, $x = (g_1, h_1)$ and $y = (g_2, h_2)$ for $g_1, g_2 \in G$ and $h_1, h_2 \in H$. Thus xy = yx implies $(g_1g_2, h_1h_2) = (g_2g_1, h_2h_1)$. Hence, $g_1g_2 = g_2g_1$ and $h_1h_2 = h_2h_1$. Since x, y are arbitrary, all elements of G commute as do all elements in H, and both groups are Abelian. This argument reverse entirely to show that G and H Abelian implies $G \oplus H$ is Abelian.

In general, the external direct product of a finite number of groups is Abelian if and only if each group in the product is Abelian.

6: Prove, by comparing orders of elements, that $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ is not isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_4$.

Notice that $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ has an element of order 8, namely (1, 1), but $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ can not have an element of order 4 since the orders in \mathbb{Z}_4 are 1, 2, and 4. (There is no way to get a least common multiple of 8 from 1, 2, and 4.)

7: Prove that $G_1 \oplus G_2$ is isomorphic to $G_2 \oplus G_1$. State the general case.

Proof. Define $\phi : G_1 \oplus G_2 \to G_2 \oplus G_1$ by $(g_1, g_2) \mapsto (g_2, g_1)$. We claim that ϕ is an isomorphism. By construction it is clear that ϕ maps from $G_1 \oplus G_2$ to $G_2 \oplus G_1$. Now $\phi((g_1, g_2)(h_1, h_2)) = \phi((g_1g_2, h_1h_2)) = (h_1h_2, g_1g_2) = (h_1, g_1)(h_2, g_2) = \phi(g_1, h_1)\phi(g_2, h_2)$ so ϕ is indeed a homomorphism. If we let $\phi((g_1, g_2)) = \phi((h_1, h_2))$ then $(g_2, g_1) = (h_2, h_1)$ so $g_2 = h_2$ and $g_1 = h_1$. Thus $(g_1, g_2) = (h_1, h_2)$ and we know ϕ is one to one. Finally we show ϕ is onto. Let $(g_2, g_1) \in G_2 \oplus G_1$. Then we know that $(g_1, g_2) \in G_1 \oplus G_2$. Moreover, $\phi((g_1, g_2)) = (g_2, g_1)$ and ϕ is indeed onto.

In general, $G_1 \oplus G_2 \oplus \cdots \oplus G_n \approx G_{\sigma(1)} \oplus G_{\sigma(2)} \oplus \cdots \oplus G_{\sigma(n)}$ for $\sigma \in S_n$.

10: How many elements of order 9 does $\mathbb{Z}_3 \oplus \mathbb{Z}_9$ have?

We know that (a, b) has order 9 if lcm(|a|, |b|) = 9. Thus |b| must be 9 and |a| can be 1 or 3. Everything in \mathbb{Z}_3 has order 1 or 3, so a can be any element in \mathbb{Z}_3 . In \mathbb{Z}_9 , there are $\phi(9) = 3^2 - 3 = 6$ elements of order 9. Thus there are $3^*6 = 18$ elements of order 9 in $\mathbb{Z}_3 \oplus \mathbb{Z}_9$.

13: For each integer n > 1, give two examples of two non isomorphic groups of order n^2 .

 \mathbb{Z}_{n^2} and $\mathbb{Z}_n \oplus \mathbb{Z}_n$ (Note: we know these are different since n is not relatively prime to n.)

14: The dihedral group D_n of order 2n $(n \ge 3)$ has a subgroup of n rotations and a subgroup of order 2. Explain why D_n cannot be isomorphic to the external direct product of two such groups.

Suppose D_n is the external direct product of two such groups. Then $D_n \approx < r > \oplus Z_2 \approx \mathbb{Z}_n \oplus \mathbb{Z}_2$. But, $\mathbb{Z}_n \oplus \mathbb{Z}_2$ is Abelian and D_n is not. Thus D_n can not be the external direct product of two such groups. (Note: It is actually the semi direct product of two such groups.)

15: Prove that the group of complex numbers under addition is isomorphic to $\mathbb{R} \oplus \mathbb{R}$.

Proof. Define $\phi : (\mathbb{C}, +) \to \mathbb{R} \oplus \mathbb{R}$ by $a + bi \mapsto (a, b)$. The calculation $\phi((a + bi) + (c + di)) = \phi((a + c) + (b + d)i) = (a + c, b + d) = (a, b) + (c, d) = \phi(a + bi) + \phi(c + di)$ shows that ϕ is indeed a homomorphism. Suppose that $\phi(a + bi) = \phi(c + di)$. Then (a, b) = (c, d) so a = c and b = d. Hence, a + bi = c + di showing one-to-one. For onto, let (a, b) be any element of $\mathbb{R} \oplus \mathbb{R}$. Then it is clear that $a + bi \in \mathbb{C}$ and $\phi(a + bi) = (a, b)$ as desired.

19: If r is a divisor of m and s is a divisor of n, find a subgroup of $\mathbb{Z}_m \oplus \mathbb{Z}_n$ that is isomorphic to $\mathbb{Z}_r \oplus \mathbb{Z}_s$.

 $<\frac{m}{r}>\oplus<\frac{n}{s}>$

20: Find a subgroup of $\mathbb{Z}_{12} \oplus \mathbb{Z}_{18}$ that is isomorphic to $\mathbb{Z}_9 \oplus \mathbb{Z}_4$.

First notice that $\mathbb{Z}_9 \oplus \mathbb{Z}_4$ is isomorphic to $\mathbb{Z}_4 \oplus \mathbb{Z}_9$. This second presentation is, by the previous problem, isomorphic to $\langle 3 \rangle \oplus \langle 2 \rangle$.

23: What is the order of any nonidentity element of $\mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$? Generalize.

Let $e \neq (a, b, c) \in \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$. Since (a, b, c) is not the identity, at least one of a, b, or c is not the identity. Every non-identity element in \mathbb{Z}_3 has order 3 and so each of these non-identity elements has order 3. Hence lcm(|a|, |b|, |c|) = 3 and the order of the element is 3.

In general, the order of any element in $\mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \cdots \otimes \mathbb{Z}_p$, where p is prime, is p.

26: The group $S_3 \oplus \mathbb{Z}_2$ is isomorphic to one of the following groups: \mathbb{Z}_{12} , $\mathbb{Z}_6 \oplus \mathbb{Z}_2$, A_4 , D_6 . Determine which one by elimination.

Since $S_3 \oplus \mathbb{Z}_2$ is not Abelian (since S_3 is not), $S_3 \oplus \mathbb{Z}_2$ is not isomorphic to \mathbb{Z}_{12} or $\mathbb{Z}_6 \oplus \mathbb{Z}_2$. Now, A_4 is the set of even permutation of S_4 and contains elements of order 1, 2, and 3, as seen on page 111 of the text. But $S_3 \oplus \mathbb{Z}_2$ contains the element ((123), 1) which has order lcm(3,2) = 6. Thus the group is not A_4 , and $S_3 \oplus \mathbb{Z}_3$ is actually isomorphic to D_6 .

30: Find all subgroups of order 4 in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$.

Recall that there are two groups of order 4, \mathbb{Z}_4 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. The subgroups isomorphic to \mathbb{Z}_4 are the cyclic ones generated by (a,b) where lcm(|a|,|b|) = 4. These are: $\langle (1,0) \rangle = \langle (3,0) \rangle, \langle (1,1) \rangle = \langle (3,3) \rangle, \langle (1,2) \rangle = \langle (3,2) \rangle, \langle (1,3) \rangle = \langle (3,1) \rangle$, $\langle (0,1) \rangle = \langle (0,3), \langle (2,1) \rangle = \langle (2,3) \rangle$. The other subgroups are isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ and are, by our previous theorem, $\langle 2 \rangle \oplus \langle 2 \rangle = \{(0,0), (0,2), (2,0), (2,2)\}$.

36: Find a subgroup of $\mathbb{Z}_{12} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{15}$ that has order 9.

 $<4>\oplus\{0\}\oplus<5>=\{(0,0,0),(4,0,0),(8,0,0),(0,0,5),(0,0,10),(4,0,5),(4,0,10),(8,0,5),(8,0,10)\}$ Note: This is not the same as $<(4,0,5)>=\{(4,0,5),(8,0,10),(0,0,0)\}$.

38: Let
$$H = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} | a, b \in \mathbb{Z}_3 \right\}$$
. Show that H is an Abelian group of order
9. Is H isomorphic to \mathbb{Z}_9 or to $\mathbb{Z}_3 \oplus \mathbb{Z}_3$?
First we show that H is an abelian group. Since $\begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & c & d \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+c & b+d \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, which is of the desired form, we know that H is closed. Associativity is known for matrix mul-

tiplication and we know that I is the standard identity matrix. Now, $A^{-1} = \begin{bmatrix} 1 & -a & -b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ by the previous calculation. Finally we observe that $\begin{bmatrix} 1 & c & d \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & a+c & d+b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ so H is Abelian since addition in \mathbb{Z}_3 is Abelian.

Now, we know that H has order 9 because there are three options for a and three for bor 3 * 3 = 9 total possible matrices.

We know H can not be isomorphic tho \mathbb{Z}_9 since it is not cyclic. But we can clearly see that $H \approx to\mathbb{Z}_3 \oplus \mathbb{Z}_3$ using the map $\begin{bmatrix} 1 & a & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mapsto (a, b).$

#40: Let $(a_1, a_2, \ldots, a_n) \in G_1 \oplus G_2 \oplus \cdots \oplus G_n$. Give a necessary and sufficient condition for $|(a_1, a_2, \ldots, a_n)| = \infty$.

Since the order of (a_1, a_2, \ldots, a_n) is just the least common multiple of the component orders, the necessary and sufficient condition is for $|a_i| = \infty$ for some $1 \le i \le n$.

#49: Express Aut(U(25)) in the form $\mathbb{Z}_m \oplus \mathbb{Z}_n$.

First, notice that U(25) has $\phi(25) = 5^2 = 5 = 20$ elements and is cyclic (one generator is 2) so $U(25) \approx \mathbb{Z}_{20}$. Thus $Aut(U(25)) \approx Aut(\mathbb{Z}_{20})$.

Now, $Aut(\mathbb{Z}_{20}) \approx U(20)$ from our previous work and $U(20) \approx U(4) \oplus U(5)$. But U(4)and U(5) are both cyclic and of orders 2 and 4 respectively. Thus, $U(4) \oplus U(5) \approx \mathbb{Z}_2 \oplus \mathbb{Z}_4$.

52: Is $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \approx \mathbb{Z}_{60} \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_2$?

 $\text{Yes! } \mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \approx \mathbb{Z}_5 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3 \approx (\mathbb{Z}_5 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3) \oplus (\mathbb{Z}_3 \oplus \mathbb{Z}_2) \oplus \mathbb{Z}_2 \approx \mathbb{Z}_{60} \oplus \mathbb{Z}_6 \oplus \mathbb{Z}_2.$

53: Is $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \approx \mathbb{Z}_{15} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{12}$?

No! $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6 \approx \mathbb{Z}_5 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ but $\mathbb{Z}_{15} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{12} \approx \mathbb{Z}_5 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_3$.

Alternately, $\mathbb{Z}_{10} \oplus \mathbb{Z}_{12} \oplus \mathbb{Z}_6$ has more than three elements of order 2 [(5,6,3), (0,6,3), (5,6,0), (5,0,3)] while $\mathbb{Z}_{15} \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_{12}$ only has three such elements [(0,0,6), (0,2,0), (0,2,6)].

55: How many isomorphisms are there from \mathbb{Z}_{12} to $\mathbb{Z}_4 \oplus \mathbb{Z}_3$?

We know that isomorphisms map generators to generators. So the isomorphisms are completely determined by where 1 maps. The generators of $\mathbb{Z}_4 \oplus \mathbb{Z}_3$ (the elements with order 12) are: (1,1), (3,1), (1,2), and (3,2). Thus there are four isomorphisms.

56: Suppose that ϕ is an isomorphism form $\mathbb{Z}_3 \oplus \mathbb{Z}_5$ to \mathbb{Z}_{15} and $\phi(2,3) = 2$. Find the element in $\mathbb{Z}_3 \oplus \mathbb{Z}_5$ that maps to 1.

Let $\phi : \mathbb{Z}_3 \oplus \mathbb{Z}_5 \to \mathbb{Z}_{15}$ be defined by $\phi((2,3)) = 2$. Then $1 \equiv 8 * 2 = 8 * \phi((2,3)) = \phi(8 * (2,3))$. This last step is the additive version of $\phi(a)^n = \phi(a^n)$. Now, $\phi(8 * (2,3)) = \phi((16,24)) = \phi((1,4))$. Thus, (1,4) maps to 1.

67: Express U(165) as an external direct product of U-groups in four different ways.

First note that 165 = 3*5*11. Then $U(165) \approx U(3) \oplus U(55) \approx U(5) \oplus U(33) \approx U(11) \oplus U(15) \approx U(3) \oplus U(5) \oplus U(11)$

68: Without doing any calculations in $Aut(\mathbb{Z}_{20})$, determine how many elements of $Aut(\mathbb{Z}_{20})$ have order 4. How many have order 2?

First we notice that $Aut(\mathbb{Z}_{20}) \approx U(20) \approx U(4) \oplus U(5)$. Further, both U(4) and U(5) are cyclic with orders 2 and 4 respectively. So, $Aut(\mathbb{Z}_{20}) \approx \mathbb{Z}_2 \oplus \mathbb{Z}_4$. Now, for an element here to have order 4, the second coordinate must be 1 or 3, and the first can be either 0 or 1. Thus there are four elements of order 4.