
Solution Outlines for Chapter 8

# 1: Prove that the external direct product of any finite number of groups is a
group.

Proof. Let G = G1 � G2 � · · · � Gn, where each Gi is a group, and let the operation ⇤
on G be defined component wise (as in the definition of external direct product). Since
each operation in Gi is associative, ⇤ is associative on G. [This is clear since a ⇤ (b ⇤ c) =
a ⇤ (b1 ⇤ c1, b2 ⇤ c2, . . . bn ⇤ cn) = (a1 ⇤ (b1 ⇤ c1), a2 ⇤ (b2 ⇤ c2), . . . , an ⇤ (bn ⇤ cn)) = ((a1 ⇤ b1) ⇤
c1, (a2 ⇤ b2) ⇤ c2, . . . , (an ⇤ bn) ⇤ cn) = (a1 ⇤ b1, a2 ⇤ b2, . . . , an ⇤ bn) ⇤ c = (a ⇤ b) ⇤ c.] Similarly, we
can see that G is closed since a ⇤ b = (a1 ⇤ b1, a2 ⇤ b2, . . . , an ⇤ bn) and aibi 2 Gi by closure of
Gi. The previous calculation also verifies that the identity in G is e = (e1, e2, . . . , en) where
ei is the identity in Gi and that the inverse of a is a�1 = (a�1

1 , a�1
2 , . . . , a�1

n ). Since each Gi

is a group, both e and a�1 is in G.

# 2: Show that Z2 � Z2 � Z2 has seven subgroups of order 2.

First notice that any subgroup of order two must be isomorphic to Z2 and hence cyclic
with an order two generator. Moreover, each subgroup of order two contains one non-identity
order two element. Thus the seven subgroups are generated by the seven non-identity order
two elements in Z2 � Z2 � Z2. Namely, these groups are:
< (1, 0, 0) >, < (0, 1, 0) >, < (0, 0, 1) >, < (1, 1, 0) >, < (1, 0, 1) >, < (0, 1, 1) >, and
< (1, 1, 1) >.

# 3: Let G be a group with identity eG and let H be a group with identity
eH. Prove that G is isomorphic to G � {eH} and that H is isomorphic to
{eG}�H.

Proof. Define � : G ! G � {eH} by g 7! (g, eH). Since �(gh) = (gh, eH) = (gh, eHeH) =
(g, eH)(h, eH) = �(g)�(h), the map � is a homomorphism. The kernel of � is simply {g|�(g) =
(eG, eH)} = {g|(g, eH) = (eG, eH)} = {g|g = eG} = {eG} so � is one-to-one. Finally, let
y 2 G� {eH}. Then y = (g, eH) for some g 2 G by definition of the external direct product.
Hence �(g) = y and the map is also onto. Since � is an isomorphism, G ⇡ G� {eH}. Using
a similar argument, it is clear that H ⇡ {eG}�H.

# 4: Show that G�H is Abelian if and only if G and H are Abelian. State the
general case.

Let G � H be Abelian. Then xy = yx for all x, y 2 G � H. By definition of external
direct product, x = (g1, h1) and y = (g2, h2) for g1, g2 2 G and h1, h2 2 H. Thus xy = yx
implies (g1g2, h1h2) = (g2g1, h2h1). Hence, g1g2 = g2g1 and h1h2 = h2h1. Since x, y are
arbitrary, all elements of G commute as do all elements in H, and both groups are Abelian.
This argument reverse entirely to show that G and H Abelian implies G�H is Abelian.

In general, the external direct product of a finite number of groups is Abelian if and only
if each group in the product is Abelian.



# 6: Prove, by comparing orders of elements, that Z8 � Z2 is not isomorphic to
Z4 � Z4.

Notice that Z8 � Z2 has an element of order 8, namely (1, 1), but Z4 � Z4 can not have
an element of order 4 since the orders in Z4 are 1, 2, and 4. (There is no way to get a least
common multiple of 8 from 1, 2, and 4.)

# 7: Prove that G1 �G2 is isomorphic to G2 �G1. State the general case.

Proof. Define � : G1 � G2 ! G2 � G1 by (g1, g2) 7! (g2, g1). We claim that � is an
isomorphism. By construction it is clear that � maps from G1 � G2 to G2 � G1. Now
�((g1, g2)(h1, h2)) = �((g1g2, h1h2)) = (h1h2, g1g2) = (h1, g1)(h2, g2) = �(g1, h1)�(g2, h2) so
� is indeed a homomorphism. If we let �((g1, g2)) = �((h1, h2)) then (g2, g1) = (h2, h1) so
g2 = h2 and g1 = h1. Thus (g1, g2) = (h1, h2) and we know � is one to one. Finally we
show � is onto. Let (g2, g1) 2 G2 � G1. Then we know that (g1, g2) 2 G1 � G2. Moreover,
�((g1, g2)) = (g2, g1) and � is indeed onto.

In general, G1 �G2 � · · ·�Gn ⇡ G�(1) �G�(2) � · · ·�G�(n) for � 2 Sn.

# 10: How many elements of order 9 does Z3 � Z9 have?

We know that (a, b) has order 9 if lcm(|a|, |b|) = 9. Thus |b| must be 9 and |a| can be
1 or 3. Everything in Z3 has order 1 or 3, so a can be any element in Z3. In Z9, there are
�(9) = 32�3 = 6 elements of order 9. Thus there are 3*6 = 18 elements of order 9 in Z3�Z9.

# 13: For each integer n > 1, give two examples of two non isomorphic groups of
order n2.

Zn2 and Zn � Zn (Note: we know these are di↵erent since n is not relatively prime to n.)
# 14: The dihedral group Dn of order 2n (n � 3) has a subgroup of n rotations

and a subgroup of order 2. Explain why Dn cannot be isomorphic to the
external direct product of two such groups.

Suppose Dn is the external direct product of two such groups. Then Dn ⇡< r > �Z2 ⇡
Zn � Z2. But, Zn � Z2 is Abelian and Dn is not. Thus Dn can not be the external direct
product of two such groups. (Note: It is actually the semi direct product of two such groups.)

# 15: Prove that the group of complex numbers under addition is isomorphic to
R� R.

Proof. Define � : (C,+) ! R� R by a+ bi 7! (a, b). The calculation �((a+ bi) + (c+ di)) =
�((a+ c) + (b+ d)i) = (a+ c, b+ d) = (a, b) + (c, d) = �(a+ bi) + �(c+ di) shows that � is
indeed a homomorphism. Suppose that �(a + bi) = �(c + di). Then (a, b) = (c, d) so a = c
and b = d. Hence, a+ bi = c+ di showing one-to-one. For onto, let (a, b) be any element of
R� R. Then it is clear that a+ bi 2 C and �(a+ bi) = (a, b) as desired.

# 19: If r is a divisor of m and s is a divisor of n, find a subgroup of Zm � Zn that
is isomorphic to Zr � Zs.



< m
r
> � < n

s
>

# 20: Find a subgroup of Z12 � Z18 that is isomorphic to Z9 � Z4.

First notice that Z9 � Z4 is isomorphic to Z4 � Z9. This second presentation is, by the
previous problem, isomorphic to < 3 > � < 2 >.

# 23: What is the order of any nonidentity element of Z3 � Z3 � Z3? Generalize.

Let e 6= (a, b, c) 2 Z3 � Z3 � Z3. Since (a, b, c) is not the identity, at least one of a, b,
or c is not the identity. Every non-identity element in Z3 has order 3 and so each of these
non-identity elements has order 3. Hence lcm(|a|, |b|, |c|) = 3 and the order of the element
is 3.

In general, the order of any element in Zp � Zp � · · · Zp, where p is prime, is p.

# 26: The group S3�Z2 is isomorphic to one of the following groups: Z12, Z6�Z2,
A4, D6. Determine which one by elimination.

Since S3�Z2 is not Abelian (since S3 is not), S3�Z2 is not isomorphic to Z12 or Z6�Z2.
Now, A4 is the set of even permutation of S4 and contains elements of order 1, 2, and 3, as
seen on page 111 of the text. But S3 � Z2 contains the element ((123), 1) which has order
lcm(3, 2) = 6. Thus the group is not A4, and S3 � Z3 is actually isomorphic to D6.

# 30: Find all subgroups of order 4 in Z4 � Z4.

Recall that there are two groups of order 4, Z4 and Z2 � Z2. The subgroups isomor-
phic to Z4 are the cyclic ones generated by (a, b) where lcm(|a|, |b|) = 4. These are:
< (1, 0) >=< (3, 0) >,< (1, 1) >=< (3, 3) >,< (1, 2) >=< (3, 2) >,< (1, 3) >=< (3, 1) >
,< (0, 1) >=< (0, 3), < (2, 1) >=< (2, 3) >. The other subgroups are isomorphic to Z2 � Z2

and are, by our previous theorem, < 2 > � < 2 >= {(0, 0), (0, 2), (2, 0), (2, 2)}.

# 36: Find a subgroup of Z12 � Z4 � Z15 that has order 9.

< 4 > �{0}� < 5 >= {(0, 0, 0), (4, 0, 0), (8, 0, 0), (0, 0, 5), (0, 0, 10), (4, 0, 5), (4, 0, 10), (8, 0, 5), (8, 0, 10)}
Note: This is not the same as < (4, 0, 5) >= {(4, 0, 5), (8, 0, 10), (0, 0, 0)}.

# 38: Let H =

8
<

:

2

4
1 a b
0 1 0
0 0 1

3

5 ��a, b 2 Z3

9
=

;. Show that H is an Abelian group of order

9. Is H isomorphic to Z9 or to Z3 � Z3?

First we show thatH is an abelian group. Since

2

4
1 a b
0 1 0
0 0 1

3

5

2

4
1 c d
0 1 0
0 0 1

3

5 =

2

4
1 a+ c b+ d
0 1 0
0 0 1

3

5,

which is of the desired form, we know thatH is closed. Associativity is known for matrix mul-



tiplication and we know that I is the standard identity matrix. Now, A�1 =

2

4
1 �a �b
0 1 0
0 0 1

3

5

by the previous calculation. Finally we observe that

2

4
1 c d
0 1 0
0 0 1

3

5

2

4
1 a b
0 1 0
0 0 1

3

5 =

2

4
1 a+ c d+ b
0 1 0
0 0 1

3

5

so H is Abelian since addition in Z3 is Abelian.

Now, we know that H has order 9 because there are three options for a and three for b
or 3 ⇤ 3 = 9 total possible matrices.

We know H can not be isomorphic tho Z9 since it is not cyclic. But we can clearly see

that H ⇡ toZ3 � Z3 using the map

2

4
1 a b
0 1 0
0 0 1

3

5 7! (a, b).

# 40: Let (a1, a2, . . . , an) 2 G1 � G2 � · · · � Gn. Give a necessary and su�cient
condition for |(a1, a2, . . . , an)| = 1.

Since the order of (a1, a2, . . . , an) is just the least common multiple of the component
orders, the necessary and su�cient condition is for |ai| = 1 for some 1  i  n.

# 49: Express Aut(U(25)) in the form Zm � Zn.

First, notice that U(25) has �(25) = 52 = 5 = 20 elements and is cyclic (one generator is
2) so U(25) ⇡ Z20. Thus Aut(U(25)) ⇡ Aut(Z20).

Now, Aut(Z20) ⇡ U(20) from our previous work and U(20) ⇡ U(4) � U(5). But U(4)
and U(5) are both cyclic and of orders 2 and 4 respectively. Thus, U(4)� U(5) ⇡ Z2 � Z4.

# 52: Is Z10 � Z12 � Z6 ⇡ Z60 � Z6 � Z2?

Yes! Z10�Z12�Z6 ⇡ Z5�Z2�Z3�Z4�Z2�Z3 ⇡ (Z5�Z4�Z3)�(Z3�Z2)�Z2 ⇡ Z60�Z6�Z2.

# 53: Is Z10 � Z12 � Z6 ⇡ Z15 � Z4 � Z12?

No! Z10�Z12�Z6 ⇡ Z5�Z4�Z3�Z3�Z2�Z2 but Z15�Z4�Z12 ⇡ Z5�Z4�Z4�Z3�Z3.

Alternately, Z10�Z12�Z6 has more than three elements of order 2 [(5,6,3), (0,6,3), (5,6,0),
(5,0,3)] while Z15 � Z4 � Z12 only has three such elements [(0,0,6), (0,2,0), (0,2,6)].

# 55: How many isomorphisms are there from Z12 to Z4 � Z3?

We know that isomorphisms map generators to generators. So the isomorphisms are
completely determined by where 1 maps. The generators of Z4�Z3 (the elements with order
12) are: (1,1), (3,1), (1,2), and (3,2). Thus there are four isomorphisms.



# 56: Suppose that � is an isomorphism form Z3 � Z5 to Z15 and �(2, 3) = 2. Find
the element in Z3 � Z5 that maps to 1.

Let � : Z3 � Z5 ! Z15 be defined by �((2, 3)) = 2. Then 1 ⌘ 8 ⇤ 2 = 8 ⇤ �((2, 3)) =
�(8 ⇤ (2, 3)). This last step is the additive version of �(a)n = �(an). Now, �(8 ⇤ (2, 3)) =
�((16, 24)) = �((1, 4)). Thus, (1, 4) maps to 1.

# 67: Express U(165) as an external direct product of U-groups in four di↵erent
ways.

First note that 165 = 3*5*11. Then U(165) ⇡ U(3)� U(55) ⇡ U(5)� U(33) ⇡ U(11)�
U(15) ⇡ U(3)� U(5)� U(11)
# 68: Without doing any calculations in Aut(Z20), determine how many elements

of Aut(Z20) have order 4. How many have order 2?

First we notice that Aut(Z20) ⇡ U(20) ⇡ U(4)� U(5). Further, both U(4) and U(5) are
cyclic with orders 2 and 4 respectively. So, Aut(Z20) ⇡ Z2 � Z4. Now, for an element here to
have order 4, the second coordinate must be 1 or 3, and the first can be either 0 or 1. Thus
there are four elements of order 4.


