Solution Outlines for Chapter 9

6: Let $H = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} | a, b, d \in \mathbb{R}, ad \neq 0 \right\}$. Is H a normal subgroup of $GL(2, \mathbb{R})$?

No; Show directly by counter example or by multiplying the general case, $\begin{bmatrix} f & g \\ h & j \end{bmatrix} \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \left(\begin{bmatrix} f & g \\ h & j \end{bmatrix} \right)^{-1}$, to see it is not contained in H.

8: Viewing < 3 > and < 12 > as subgroups of \mathbb{Z} , prove that < 3 > / < 12 > is isomorphic to \mathbb{Z}_4 . Similarly, prove that < 8 > / < 48 > is isomorphic to \mathbb{Z}_6 . Generalize to arbitrary integers k and n.

First, notice $\langle 3 \rangle = \{\dots -12, -9, -6, -3, 0, 3, 6, 9, 12, \dots\}$ and $\langle 12 \rangle = \{\dots -24, -12, 0, 12, 24, \dots\}$. Now $\langle 3 \rangle / \langle 12 \rangle$ looks like $\{-9+ \langle 12 \rangle, -6+ \langle 12 \rangle, -3+ \langle 12 \rangle, -3+ \langle 12 \rangle, -6+ \langle 12 \rangle, 9+ \langle 12 \rangle\}$ since multiples of 12 will be absorbed by $\langle 12 \rangle$. Recall aH = bH if and only if $b^{-1}a \in H$. Here this tells me that because $-(3) + -9 = -12, 3+ \langle 12 \rangle = -9+ \langle 12 \rangle$. Similarly, $-3+ \langle 12 \rangle = 9+ \langle 12 \rangle$, and $-6+ \langle 12 \rangle = 6+ \langle 12 \rangle$. So, $\langle 3 \rangle / \langle 12 \rangle = \{\langle 12 \rangle, 3+ \langle 12 \rangle, 6+ \langle 12 \rangle, 9+ \langle 12 \rangle\}$. Notice that $3+ \langle 12 \rangle$ has order 4 and hence generates all of $\langle 3 \rangle / \langle 12 \rangle$. Thus, $\langle 3 \rangle / \langle 12 \rangle$ is cyclic of order 4, and hence isomorphic to \mathbb{Z}_4 .

Now, consider $\langle 8 \rangle / \langle 48 \rangle$. Similar to before, it is clear that this group consists of $\{\langle 48 \rangle, 8+ \langle 48 \rangle, 16+ \langle 48 \rangle, 24+ \langle 48 \rangle, 32+ \langle 48 \rangle, 40+ \langle 48 \rangle\}$. Notice that still similar to before $8+ \langle 48 \rangle$ is a generator of the quotient group and that the group has order 48 divided by 8, or 6. Hence, it is isomorphic to \mathbb{Z}_6 .

In general, suppose k divides n. Then $\langle k \rangle / \langle n \rangle$ is of the form $\{\langle n \rangle, k + \langle n \rangle, 2k + \langle n \rangle, \dots, (n-k) + \langle n \rangle\}$. This is clearly cyclic with generator $k + \langle n \rangle$ and has order $\frac{n}{k}$. Hence $\langle k \rangle / \langle n \rangle$ is isomorphic to $\mathbb{Z}_{\frac{n}{k}}$.

#11: Let $G = \mathbb{Z}_4 \oplus U(4)$, $H = \langle (2,3) \rangle$, and $K = \langle (2,1) \rangle$. Show that G/H is not isomorphic to G/K. (This shows that $H \approx K$ does not imply that $G/H \approx G/K$.)

For clarity, we write out each of the groups: $G = \{(0, 1), (1, 1), (2, 1), (3, 1), (0, 3), (1, 3), (2, 3), (3, 3)\},$ $H = \{(2, 3), (0, 1)\},$ and $K = \{(2, 1), (0, 1)\}.$ Since H and K both have order 2, they are both isomorphic to \mathbb{Z}_2 . Straight forward calculation shows,

$$G/H = \{H = (0,1)H = (2,3)H, (1,1)H = (3,3)H, (2,1)H = (0,3)H, (3,1)H = (1,3)H\}$$

and

$$G/K = \{K = (0,1)K = (2,1)K, (1,1)K = (3,1)K, (0,3)K = (2,3)K, (3,3)K = (1,3)K\}$$

. Notice that each has 4 elements as expected since 4*2=8.

Consider (1,3)H: $<(1,3)H >= \{(1,3)H, (2,1)H, (3,3)H, (0,1)H\} = G/H$. So, G/H is cyclic of order 4, and hence is isomorphic to \mathbb{Z}_4 .

However, observe that G/K is not cyclic since $< (0,1)K >= \{K\}, < (1,1)K >= \{(1,1)K, (2,1)K\}, < (0,3)K >= \{(0,3)K, (0,1)K\} \text{ and } < (3,3)K >= \{(3,3)K, (2,1)K\}.$ In fact, we recognize that this structure is the Klein-4 group, $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. Hence $G/H \not\approx G/K$.

13: Prove that a factor group of an Abelian group is Abelian.

Let G be an Abelian group and consider its factor group G/H, where H is normal in G. Let aH and bH be arbitrary elements of the quotient group. Then aHbH = (ab)H = (ba)H = bHaH because G is Abelian. Hence the factor group is also Abelian.

14: What is the order of the element $14 + \langle 8 \rangle$ in the factor group $\mathbb{Z}_{24}/\langle 8 \rangle$?

For completeness, observe $\langle 8 \rangle = \{8, 16, 0\}$ and $\mathbb{Z}_{24}/\langle 8 \rangle = \{\langle 8 \rangle, 1+\langle 8 \rangle, 2+\langle 8 \rangle, 3+\langle 8 \rangle, 4+\langle 8 \rangle, 5+\langle 8 \rangle, 6+\langle 8 \rangle, 7+\langle 8 \rangle\}$. Now let's observe $14+\langle 8 \rangle$: $(14+\langle 8 \rangle) + (14+\langle 8 \rangle) = 28+\langle 8 \rangle = 4+8$, $(14+\langle 8 \rangle) + (4+\langle 8 \rangle) = 18+\langle 8 \rangle = 2+\langle 8 \rangle, (14+\langle 8 \rangle) + (2+\langle 8 \rangle = 16+\langle 8 \rangle = <8 \rangle$

Hence the order of 14 + 8 is 4.

16: Recall that $Z(D_6) = \{e, r^3\}$. What is the order of the element $rZ(D_6)$ in the factor group $D_6/Z(D_6)$?

Notice that problem 16 here is rewritten in terms of generators and relations. Now it is clear that the order of $rZ(D_6)$ is 3 since $r^3 \in Z(D_6)$.

17: Let $G = \mathbb{Z}/\langle 20 \rangle$ and $H = \langle 4 \rangle / \langle 20 \rangle$. List the elements of H and G/H.

Observe: $\langle 4 \rangle = \{\dots, -8, -4, 0, 4, 8, 12, \dots\}$ and $\langle 20 \rangle = \{\dots -40, -20, 0, 20, 40, 60, \dots\}$. Hence $H = \{\langle 20 \rangle, 4+\langle 20 \rangle, 8+\langle 20 \rangle, 12+\langle 20 \rangle, 16+\langle 20 \rangle\} \approx \mathbb{Z}_5$.

Now notice that $G = \{ < 20 >, 1+ < 20 >, 2+ < 20 >, \dots, 19+ < 20 > \} \approx \mathbb{Z}_{20}$. So $G/H = \{0+<20>+H, 1+<20>+H, 2+<20>+H, 3+<20>+H \} \approx \mathbb{Z}_4$.

19: What is the order of the factor group $(\mathbb{Z}_{10} \oplus U(10))/ \langle (2,9) \rangle$?

The order of the factor group is $\frac{|\mathbb{Z}_{10} \oplus U(10)|}{|\langle (2,9) \rangle} = \frac{10 \times 4}{lcm(|2|,|9|)} = \frac{40}{lcm(5,2)} = \frac{40}{10} = 4.$

21: Prove that an Abelian group of order 33 is cyclic.

Let G be an Abelian group of order 33. By Theorem 9.5, there exists an element of G, say a, such that |a| = 3 and an element of G, say b, such that |b| = 11. Since G is Abelian, $(ab)^{33} = a^{33}b^{33} = e$ so the order of ab divides 33. However, it is clear |ab| is not 1, 3, or 11. Hence |ab| = 33 so $ab \in G$ generates G, and G is cyclic.

23: Determine the order of $(\mathbb{Z} \oplus \mathbb{Z})/\langle (4,2) \rangle$. Is the group cyclic?

Notice that (1,1)+ < (4,2) > has infinite order [Why? Suppose it is of finite order, say n. Then $(n,n) \in < (4,2) >$ which means (n,n) = k(4,2) for some k. So k = n/4 = n/2 or 4n = 2n which means n = 2n so n = 0 since n is an integer.]. Hence the group $(\mathbb{Z} \oplus \mathbb{Z})/<(4,2) >$ also has infinite order.

If the quotient group is cyclic, it must be isomorphic to \mathbb{Z} (from previous work) so every non-identity element should have infinite order. However, $(6,3) + \langle (4,2) \rangle$ has order 2. Hence, it is not cyclic.

24: The group $(\mathbb{Z}_4 \oplus \mathbb{Z}_{12})/\langle (2,2) \rangle$ is isomorphic to one of \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Determine which one by elimination.

Observe that $H = \langle (2,2) \rangle = \{(2,2), (0,4), (2,6), (0,8), (2,10), (0,0)\}$ (which has order 6 as expected). Let $G = (\mathbb{Z}_4 \oplus \mathbb{Z}_{12}) / \langle (2,2) \rangle$. Then $G = \{H, (1,0)H, (0,1)H, (1,1)H, (0,2)H, (0,3)H, (3,0)H, (1,3)H\}$ and these cosets have or-

ders 1, 2, 4, 4, 2, 4, and 2 respectively. Hence, G is not cyclic and not isomorphic to \mathbb{Z}_8 . Further, since there is an element of order 4, G is not isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Hnece, $G \approx \mathbb{Z}_4 \oplus \mathbb{Z}_2$.

25: Let G = U(32) and $H = \{1, 31\}$. The group G/H is isomorphic to one of \mathbb{Z}_8 , $\mathbb{Z}_4 \oplus \mathbb{Z}_2$, or $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Determine which one by elimination.

First, we know that the order of $U(32) = 2^5 - 2^4 = 16$ so G/H has order $\frac{16}{2} = 8$ as anticipated.

Consider $3H = \{3, 29\} \in G/H$: $\langle 3H \rangle = \{3H, 9H, 27H, 17H, 19H, 25H, 11H, H\}$ so the order of 3H is 8. Hence $G/H = \langle 3H \rangle \approx \mathbb{Z}_8$.

27: Let G = U(16), $H = \{1, 15\}$ and $K = \{1, 9\}$. Are H and K isomorphic? Are G/H and G/K isomorphic?

It is obvious that $H \approx K \approx \mathbb{Z}_2$. Now, we need to check if G/H and G/K are isomorphic. We know that each has order 4 and that there are only two such groups. Consider 3H: $< 3H >= \{3H, 9H, 11H, H\}$ so 3H generates G/H and $G/H \approx \mathbb{Z}_4$. Now observe G/K: $< K >= \{K\}, < 3K >= \{3K, K\}, < 5K >= \{5K, K\}$ and $< 7K >= \{7K, K\}$. Thus $G/K \approx \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Hence $G/K \not\approx G/H$.

37: Let G be a finite group and let H be a normal subgroup of G. Prove that the order of the element gH in G/H must divide the order of g in G.

Let
$$|g| = n$$
. Then $(gH)^n = g^n H = eH = H$ so $|gH|$ must divide n .

38: Let H be a normal subgroup of G and let a belong to G. If the element aH has order 3 in the group G/H and |H| = 10, what are the possibilities for the order of a?

First, $|G| = |aH| \times |H| = 3 \times 10 = 30$. So |a| divides 30. But we also know, by the previous problem, that 3 also has to divide |a|. Hence the possible orders for a are 3, 6, 15, and 30.

40: Let ϕ be an isomorphism from a group G onto a group \overline{G} . Prove that if H is a normal subgroup of G, then $\phi(H)$ is a normal subgroup of \overline{G} .

Let *H* be normal in *G*. We want to show $y\phi(H)y^{-1} \subseteq \phi(H)$ for all $y \in \overline{G} = \phi(G)$. Since $y \in \phi(G)$, there exists an $x \in G$ such that $y = \phi(x)$. Thus $y\phi(H)y^{-1} = \phi(x)\phi(H)(\phi(x))^{-1} = \phi(xHx^{-1}) = \phi(H)$ since *H* is normal in *G*, and we are done.

42: An element is called a square if it can be expressed in the form b^2 for some b. Suppose that G is an Abelian group and H is a subgroup of G. If every element of H is a square and every element of G/H is a square, prove that every element of G is a square. Does your proof remain valid when "square" is replaced by "nth power" where n is any integer?

Let G be an Abelian group, H be a subgroup of G and every element of both H and G/H be a square. Suppose $g \in G$. Since $g \in G$, $gH \in G/H$. But all elements of G/H are squares so there exists an $aH \in G/H$ such that $gH = (aH)^2 = a^2H$. By properties of cosets, we now have that $(a^2)^{-1}g \in H$. But every element in H is a square so there exists a $b \in H$ such that $(a^2)^{-1}g = b^2$. Solving for g we see $g = a^2b^2 = (ab)^2$ since G is Abelian. But this means that g is a square. Hence every element of G is a square.

Notice that this did not depend on a property of 2 so the proof remains valid when 2 is replaced by $n \in \mathbb{Z}$.

#46: Show that D_{13} is isomorphic to $Inn(D_{13})$.

First, recall that $Z(D_{13}) = \{e\}$. Now, we know that $Inn(D_{13}) \approx D_{13}/Z(D_{13}) = D_{13}$.

#49: Suppose that G is a non-Abelian group of order p^3 where p is prime and $Z(G) \neq \{e\}$. Prove that |Z(G)| = p.

First recall that Z(G) is normal in G. Since G is non-Abelian, Z(G) does not have order p^3 . Farther, since Z(G) is a non-trivial subgroup, it's order is not 1 and divides p^3 so it has order p, or p^2 .

Suppose that the order of Z(G) is p^2 . Then |G/Z(G)| = p and hence the quotient group G/Z(G) is cyclic. But this implies, by Theorem 9.3, that G is Abelian, which is a contradiction. Hence $|Z(G)| = p^2$.

50: If |G| = pq where p and q are primes that are not necessarily distinct, prove that |Z(G)| = 1 or pq.

Let |G| = pq, as above. Since Z(G) is a normal subgroup of G, |Z(G)| = 1, p, q, or pq. If G is Abelian, |Z(G)| = pq.

Assume G is not Abelian. Without loss of generality, let |Z(G)| = p. Then |G/Z(G)| = q, which is prime. Hence |G/Z(G)| is cyclic and G is Abelian. But this is a contradiction. Hence |Z(G)| = 1.

51: Let N be a normal subgroup of G and let H be a subgroup of G. If N is a subgroup of H, prove that H/N is a normal subgroup of G/N if and only if H is a normal subgroup of G.

Let N be a normal subgroup of G and let H be any subgroup of G. Assume $N \subseteq H$.

"⇒" Let H/N be normal in G/N. Then for all $gN \in G/N$ and $hN \in H/N$, $(gN)(hN)(gN)^{-1} = (ghg^{-1})N \in H/N$. Thus $ghg^{-1}N = h'N$ for some h'inH. Hence $ghg^{-1} = h'n$ for some $n \in N$. But $h' \in H$ and $n \in H$ so $h'n \in H$. Hence $gHg^{-1} \subset N$. Thus H is normal in G.

" \Leftarrow " The argument above reverses.

56: Show that the intersection of two normal subgroups of G is a normal subgroup of G. Generalize.

Let H and K be normal subgroups of G. Let $x \in H \cap K$ and $g \in G$. Since $x \in H$, gxg^{-1} is in H. Similarly, gxg^{-1} is in K. Thus gxg^{-1} is in $H \cap K$ for all $g \in G$ and $x \in H \cap K$. Thus, $H \cap K$ is normal in G. Note that in a previous chapter we showed that $H \cap K$ is a subgroup of G, which completes the proof.

61: Let H be a normal subgroup of a finite group G and let $x \in G$. If gcd(|x|, |G/H|) = 1, show that $x \in H$.

Let gcd(|x|, |G/H|) = 1 as above. From an earlier problem we know that |xH| must divide |x|, so gcd(|xH|, |G/H|) must also be 1. But we also know that |xH| must divide |G/H| because xH is an element of this group. Hence |xH| = 1 so xH = H, which implies $x \in H$.

63: If N is a normal subgroup of G and |G/N| = m, show that $x^m \in N$ for all x in G.

Let $x \in G$ and |G/N| = m. Then $x^m N = (xN)^m = (xN)^{|G/N|} = N$ so $x^m \in N$.

68: Recall that a subgroup N of a group G is called characteristic if $\phi(N) = N$ for all automorphisms ϕ of G. If N is a characteristic subgroup of G, show that N is a normal subgroup of G.

Let N be a characteristic subgroup of G. Then $\phi(N) = N$ for all automorphisms of G. In particular, $\phi_g(N) = N$ when ϕ_g is the conjugation map by g. Thus $gNg^{-1} = N$ for all $g \in G$. So N is normal in G.

Team Problem Solutions for Ch 9

10: Let $H = \{(1), (12)(34)\}$ in A_4 .

a. Show that H is not normal in A_4 .

We know that $(123)H = \{(123), (134)\}$ and $H(123) = \{(123), (324)\}$. These are not equal so H is not normal in A_4 .

b. Referring to the multiplication table for A_4 in Table 5.1 on page 111, show that, although $\alpha_6 H = \alpha_7 H$ and $\alpha_9 H = \alpha_{11} H$, it is not true that $\alpha_6 \alpha_9 H = \alpha_7 \alpha_{11} H$. Explain why this proves that the left cosets of H do not form a group under coset multiplication.

 $\alpha_6\alpha_9H = (243)(132)H = (12)(34)H = H$ and $\alpha_7\alpha_{11}H = (142)(234)H = (14)(23)H \neq H$. This shows that multiplication is not well defined for these cosets and hence the left cosets of H do not form a group under coset multiplication. This does not surprise us since we know that normality was required for well-defined.

#47: Suppose that N is a normal subgroup of a finite group G and H is a subgroup of G. If |G/N| is prime, prove that H is contained in N or that NH = G.

Let N be a normal subgroup of a finite group G, and H be any subgroup of G. Let |G/N| = p, a prime. Now we know that $N \subseteq NH \subseteq G$. Therefore, $p = |G : N| = |G : NH| = |G : NH| \times |NH : N|$. Thus |G : NH| is p or 1. If |G : NH| = 1, then G = NH. If |G : NH| = p, then |NH : N| = 1 so NH = N, which means that $H \subseteq N$.

65: If G is non-Abelian, show that Aut(G) is not cyclic.

Proof. Suppose not. Let Aut(G) be cyclic. Then Inn(G) is cyclic since Inn(G) is a subgroup of Aut(G) and subgroups of cyclic groups are cyclic. We know that $Inn(G) \approx G/Z(G)$ so G/Z(G) must be cyclic. But this implies that G is Abelian, which is a contradiction. Thus Aut(G) is not cyclic.