
Solution Outlines for Chapter 9

# 6: Let H =

{[
a b
0 d

] ∣∣a, b, d ∈ R, ad 6= 0

}
. Is H a normal subgroup of GL(2,R)?

No; Show directly by counter example or by multiplying the general case,[
f g
h j

] [
a b
0 d

]([
f g
h j

])−1
, to see it is not contained in H.

# 8: Viewing < 3 > and < 12 > as subgroups of Z, prove that < 3 > / < 12 > is
isomorphic to Z4. Similarly, prove that < 8 > / < 48 > is isomorphic to Z6.
Generalize to arbitrary integers k and n.

First, notice < 3 >= {. . . − 12,−9,−6,−3, 0, 3, 6, 9, 12, . . .} and < 12 >= {. . . −
24,−12, 0, 12, 24, . . .}. Now < 3 > / < 12 > looks like {−9+ < 12 >,−6+ < 12 >
,−3+ < 12 >,< 12 >, 3+ < 12 >, 6+ < 12 >, 9+ < 12 >} since multiples of 12 will be
absorbed by < 12 >. Recall aH = bH if and only if b−1a ∈ H. Here this tells me that
because −(3) +−9 = −12, 3+ < 12 >= −9+ < 12 >. Similarly, −3+ < 12 >= 9+ < 12 >,
and −6+ < 12 >= 6+ < 12 >. So, < 3 > / < 12 >= {< 12 >, 3+ < 12 >, 6+ < 12 >
, 9+ < 12 >}. Notice that 3+ < 12 > has order 4 and hence generates all of < 3 > / < 12 >.
Thus, < 3 > / < 12 > is cyclic of order 4, and hence isomorphic to Z4.

Now, consider < 8 > / < 48 >. Similar to before, it is clear that this group consists of
{< 48 >, 8+ < 48 >, 16+ < 48 >, 24+ < 48 >, 32+ < 48 >, 40+ < 48 >}. Notice that still
similar to before 8+ < 48 > is a generator of the quotient group and that the group has
order 48 divided by 8, or 6. Hence, it is isomorphic to Z6.

In general, suppose k divides n. Then < k > / < n > is of the form {< n >, k+ < n >
, 2k+ < n >, . . . , (n− k)+ < n >}. This is clearly cyclic with generator k+ < n > and has
order n

k
. Hence < k > / < n > is isomorphic to Zn

k
.

# 11: Let G = Z4 ⊕ U(4), H =< (2, 3) >, and K =< (2, 1) >. Show that G/H is
not isomorphic to G/K. (This shows that H ≈ K does not imply that
G/H ≈ G/K.)

For clarity, we write out each of the groups: G = {(0, 1), (1, 1), (2, 1), (3, 1), (0, 3), (1, 3), (2, 3), (3, 3)},
H = {(2, 3), (0, 1)}, and K = {(2, 1), (0, 1)}. Since H and K both have order 2, they are
both isomorphic to Z2. Straight forward calculation shows,

G/H = {H = (0, 1)H = (2, 3)H, (1, 1)H = (3, 3)H, (2, 1)H = (0, 3)H, (3, 1)H = (1, 3)H}

and

G/K = {K = (0, 1)K = (2, 1)K, (1, 1)K = (3, 1)K, (0, 3)K = (2, 3)K, (3, 3)K = (1, 3)K}

. Notice that each has 4 elements as expected since 4*2=8.



Consider (1, 3)H: < (1, 3)H >= {(1, 3)H, (2, 1)H, (3, 3)H, (0, 1)H} = G/H. So, G/H is
cyclic of order 4, and hence is isomorphic to Z4.

However, observe that G/K is not cyclic since < (0, 1)K >= {K}, < (1, 1)K >=
{(1, 1)K, (2, 1)K}, < (0, 3)K >= {(0, 3)K, (0, 1)K} and < (3, 3)K >= {(3, 3)K, (2, 1)K}.
In fact, we recognize that this structure is the Klein-4 group, Z2 ⊕ Z2. Hence G/H 6≈ G/K.

# 13: Prove that a factor group of an Abelian group is Abelian.

Let G be an Abelian group and consider its factor group G/H, where H is normal in
G. Let aH and bH be arbitrary elements of the quotient group. Then aHbH = (ab)H =
(ba)H = bHaH because G is Abelian. Hence the factor group is also Abelian.

# 14: What is the order of the element 14+ < 8 > in the factor group Z24/ < 8 >?

For completeness, observe < 8 >= {8, 16, 0} and Z24/ < 8 >= {< 8 >, 1+ < 8 >, 2+ <
8 >, 3+ < 8 >, 4+ < 8 >, 5+ < 8 >, 6+ < 8 >, 7+ < 8 >}. Now let’s observe 14+ < 8 >:

(14+ < 8 >) + (14+ < 8 >) = 28+ < 8 >= 4 + 8, (14+ < 8 >) + (4+ < 8 >) = 18+ <
8 >= 2+ < 8 >, (14+ < 8 >) + (2+ < 8 >= 16+ < 8 >=< 8 >

Hence the order of 14 + 8 is 4.

# 16: Recall that Z(D6) = {e, r3}. What is the order of the element rZ(D6) in the
factor group D6/Z(D6)?

Notice that problem 16 here is rewritten in terms of generators and relations. Now it is
clear that the order of rZ(D6) is 3 since r3 ∈ Z(D6).

# 17: Let G = Z/ < 20 > and H =< 4 > / < 20 >. List the elements of H and G/H.

Observe: < 4 >= {. . . ,−8,−4, 0, 4, 8, 12, . . .} and< 20 >= {. . .−40,−20, 0, 20, 40, 60, . . .}.
Hence H = {< 20 >, 4+ < 20 >, 8+ < 20 >, 12+ < 20 >, 16+ < 20 >} ≈ Z5.

Now notice that G = {< 20 >, 1+ < 20 >, 2+ < 20 >, . . . , 19+ < 20 >} ≈ Z20. So
G/H = {0+ < 20 > +H, 1+ < 20 > +H, 2+ < 20 > +H, 3+ < 20 > +H} ≈ Z4.

# 19: What is the order of the factor group (Z10 ⊕ U(10))/ < (2, 9) >?

The order of the factor group is |Z10⊕U(10)|
|<(2,9)>

= 10×4
lcm(|2|,|9|) = 40

lcm(5,2)
= 40

10
= 4.

# 21: Prove that an Abelian group of order 33 is cyclic.

Let G be an Abelian group of order 33. By Theorem 9.5, there exists an element of G,
say a, such that |a| = 3 and an element of G, say b, such that |b| = 11. Since G is Abelian,
(ab)33 = a33b33 = e so the order of ab divides 33. However, it is clear |ab| is not 1, 3, or 11.
Hence |ab| = 33 so ab ∈ G generates G, and G is cyclic.



# 23: Determine the order of (Z⊕ Z)/ < (4, 2) >. Is the group cyclic?

Notice that (1, 1)+ < (4, 2) > has infinite order [Why? Suppose it is of finite order, say
n. Then (n, n) ∈< (4, 2) > which means (n, n) = k(4, 2) for some k. So k = n/4 = n/2
or 4n = 2n which means n = 2n so n = 0 since n is an integer.]. Hence the group
(Z⊕ Z)/ < (4, 2) > also has infinite order.

If the quotient group is cyclic, it must be isomorphic to Z (from previous work) so every
non-identity element should have infinite order. However, (6, 3)+ < (4, 2) > has order 2.
Hence, it is not cyclic.

# 24: The group (Z4 ⊕ Z12)/ < (2, 2) > is isomorphic to one of Z8, Z4 ⊕ Z2, or
Z2 ⊕ Z2 ⊕ Z2. Determine which one by elimination.

Observe that H =< (2, 2) >= {(2, 2), (0, 4), (2, 6), (0, 8), (2, 10), (0, 0)} (which has order
6 as expected). Let G = (Z4 ⊕ Z12)/ < (2, 2) >. Then
G = {H, (1, 0)H, (0, 1)H, (1, 1)H, (0, 2)H, (0, 3)H, (3, 0)H, (1, 3)H} and these cosets have or-
ders 1, 2, 4, 4, 2, 4, 4, and 2 respectively. Hence, G is not cyclic and not isomorphic to Z8.
Further, since there is an element of order 4, G is not isomorphic to Z2 ⊕ Z2 ⊕ Z2. Hnece,
G ≈ Z4 ⊕ Z2.

# 25: Let G = U(32) and H = {1, 31}. The group G/H is isomorphic to one of Z8,
Z4 ⊕ Z2, or Z2 ⊕ Z2 ⊕ Z2. Determine which one by elimination.

First, we know that the order of U(32) = 25 − 24 = 16 so G/H has order 16
2

= 8 as
anticipated.

Consider 3H = {3, 29} ∈ G/H: < 3H >= {3H, 9H, 27H, 17H, 19H, 25H, 11H,H} so the
order of 3H is 8. Hence G/H =< 3H >≈ Z8.

# 27: Let G = U(16), H = {1, 15} and K = {1, 9}. Are H and K isomorphic? Are
G/H and G/K isomorphic?

It is obvious that H ≈ K ≈ Z2. Now, we need to check if G/H and G/K are isomorphic.
We know that each has order 4 and that there are only two such groups. Consider 3H:
< 3H >= {3H, 9H, 11H,H} so 3H generates G/H and G/H ≈ Z4. Now observe G/K:
< K >= {K}, < 3K >= {3K,K}, < 5K >= {5K,K} and < 7K >= {7K,K}. Thus
G/K ≈ Z2 ⊕ Z2. Hence G/K 6≈ G/H.

# 37: Let G be a finite group and let H be a normal subgroup of G. Prove that
the order of the element gH in G/H must divide the order of g in G.

Let |g| = n. Then (gH)n = gnH = eH = H so |gH| must divide n.

# 38: Let H be a normal subgroup of G and let a belong to G. If the element
aH has order 3 in the group G/H and |H| = 10, what are the possibilities
for the order of a?



First, |G| = |aH|× |H| = 3×10 = 30. So |a| divides 30. But we also know, by the previ-
ous problem, that 3 also has to divide |a. Hence the possible orders for a are 3, 6, 15, and 30.

# 40: Let φ be an isomorphism from a group G onto a group Ḡ. Prove that if H
is a normal subgroup of G, then φ(H) is a normal subgroup of Ḡ.

Let H be normal in G. We want to show yφ(H)y−1 ⊆ φ(H) for all y ∈ Ḡ = φ(G). Since
y ∈ φ(G), there exists an x ∈ G such that y = φ(x). Thus yφ(H)y−1 = φ(x)φ(H)(φ(x))−1 =
φ(xHx−1) = φ(H) since H is normal in G, and we are done.

# 42: An element is called a square if it can be expressed in the form b2 for some
b. Suppose that G is an Abelian group and H is a subgroup of G. If every
element of H is a square and every element of G/H is a square, prove
that every element of G is a square. Does your proof remain valid when
“square” is replaced by “nth power” where n is any integer?

Let G be an Abelian group, H be a subgroup of G and every element of both H and
G/H be a square. Suppose g ∈ G. Since g ∈ G, gH ∈ G/H. But all elements of G/H
are squares so there exists an aH ∈ G/H such that gH = (aH)2 = a2H. By properties of
cosets, we now have that (a2)−1g ∈ H. But every element in H is a square so there exists a
b ∈ H such that (a2)−1g = b2. Solving for g we see g = a2b2 = (ab)2 since G is Abelian. But
this means that g is a square. Hence every element of G is a square.

Notice that this did not depend on a property of 2 so the proof remains valid when 2 is
replaced by n ∈ Z.

# 46: Show that D13 is isomorphic to Inn(D13).

First, recall that Z(D13) = {e}. Now, we know that Inn(D13) ≈ D13/Z(D13) = D13.

# 49: Suppose that G is a non-Abelian group of order p3 where p is prime and
Z(G) 6= {e}. Prove that |Z(G)| = p.

First recall that Z(G) is normal in G. Since G is non-Abelian, Z(G) does not have order
p3. Farther, since Z(G) is a non-trivial subgroup, it’s order is not 1 and divides p3 so it has
order p, or p2.

Suppose that the order of Z(G) is p2. Then |G/Z(G)| = p and hence the quotient group
G/Z(G) is cyclic. But this implies, by Theorem 9.3, that G is Abelian, which is a contra-
diction. Hence |Z(G)| = p2.

# 50: If |G| = pq where p and q are primes that are not necessarily distinct, prove
that |Z(G)| = 1 or pq.

Let |G| = pq, as above. Since Z(G) is a normal subgroup of G, |Z(G)| = 1, p, q, or pq. If
G is Abelian, |Z(G)| = pq.



Assume G is not Abelian. Without loss of generality, let |Z(G)| = p. Then |G/Z(G)| = q,
which is prime. Hence |G/Z(G)| is cyclic and G is Abelian. But this is a contradiction. Hence
|Z(G)| = 1.

# 51: Let N be a normal subgroup of G and let H be a subgroup of G. If N is a
subgroup of H, prove that H/N is a normal subgroup of G/N if and only
if H is a normal subgroup of G.

Let N be a normal subgroup of G and let H be any subgroup of G. Assume N ⊆ H.

“⇒” LetH/N be normal inG/N . Then for all gN ∈ G/N and hN ∈ H/N , (gN)(hN)(gN)−1 =
(ghg−1)N ∈ H/N . Thus ghg−1N = h′N for some h′inH. Hence ghg−1 = h′n for some
n ∈ N . But h′ ∈ H and n ∈ H so h′n ∈ H. Hence gHg−1 ⊂ N . Thus H is normal in G.

“⇐” The argument above reverses.

# 56: Show that the intersection of two normal subgroups of G is a normal
subgroup of G. Generalize.

Let H and K be normal subgroups of G. Let x ∈ H ∩K and g ∈ G. Since x ∈ H, gxg−1

is in H. Similarly, gxg−1 is in K. Thus gxg−1 is in H ∩ K for all g ∈ G and x ∈ H ∩ K.
Thus, H ∩K is normal in G. Note that in a previous chapter we showed that H ∩K is a
subgroup of G, which completes the proof.

# 61: Let H be a normal subgroup of a finite group G and let x ∈ G. If
gcd(|x|, |G/H|) = 1, show that x ∈ H.

Let gcd(|x|, |G/H|) = 1 as above. From an earlier problem we know that |xH| must
divide |x|, so gcd(|xH|, |G/H|) must also be 1. But we also know that |xH| must divide
|G/H| because xH is an element of this group. Hence |xH| = 1 so xH = H, which implies
x ∈ H.

# 63: If N is a normal subgroup of G and |G/N | = m, show that xm ∈ N for all x
in G.

Let x ∈ G and |G/N | = m. Then xmN = (xN)m = (xN)|G/N | = N so xm ∈ N .

# 68: Recall that a subgroup N of a group G is called characteristic if φ(N) = N
for all automorphisms φ of G. If N is a characteristic subgroup of G, show
that N is a normal subgroup of G.

Let N be a characteristic subgroup of G. Then φ(N) = N for all automorphisms of G.
In particular, φg(N) = N when φg is the conjugation map by g. Thus gNg−1 = N for all
g ∈ G. So N is normal in G.



Team Problem Solutions for Ch 9

# 10: Let H = {(1), (12)(34)} in A4.

a. Show that H is not normal in A4.

We know that (123)H = {(123), (134)} and H(123) = {(123), (324)}. These are not
equal so H is not normal in A4.

b. Referring to the multiplication table for A4 in Table 5.1 on page 111, show
that, although α6H = α7H and α9H = α11H, it is not true that α6α9H =
α7α11H. Explain why this proves that the left cosets of H do not form a
group under coset multiplication.

α6α9H = (243)(132)H = (12)(34)H = H and α7α11H = (142)(234)H = (14)(23)H 6= H.
This shows that multiplication is not well defined for these cosets and hence the left cosets
of H do not form a group under coset multiplication. This does not surprise us since we
know that normality was required for well-defined.

# 47: Suppose that N is a normal subgroup of a finite group G and H is a
subgroup of G. If |G/N | is prime, prove that H is contained in N or that
NH = G.

Let N be a normal subgroup of a finite group G, and H be any subgroup of G. Let
|G/N | = p, a prime. Now we know that N ⊆ NH ⊆ G. Therefore, p = |G : N | = |G :
NH|×|NH : N |. Thus |G : NH| is p or 1. If |G : NH| = 1, then G = NH. If |G : NH| = p,
then |NH : N | = 1 so NH = N , which means that H ⊆ N .

# 65: If G is non-Abelian, show that Aut(G) is not cyclic.

Proof. Suppose not. Let Aut(G) be cyclic. Then Inn(G) is cyclic since Inn(G) is a subgroup
of Aut(G) and subgroups of cyclic groups are cyclic. We know that Inn(G) ≈ G/Z(G) so
G/Z(G) must be cyclic. But this implies that G is Abelian, which is a contradiction. Thus
Aut(G) is not cyclic.


