Solution Outlines for Chapter 9

# 6: Let H = {[ 8 2 } ’a,b,d € R, ad # O}. Is H a normal subgroup of GL(2,R)?

No; Show directly by counter example or by multiplying the general case,

{f 91{“ b}({f 91)1 to see it is not contained in H
hjllod hj ’ |

# 8: Viewing < 3 > and < 12 > as subgroups of Z, prove that <3 > / <12 > is
isomorphic to Zs. Similarly, prove that < 8 > / < 48 > is isomorphic to Zs.
Generalize to arbitrary integers k£ and n.

First, notice < 3 >= {... —12,-9,-6,-3,0,3,6,9,12,...} and < 12 >= {... —
24,-12,0,12,24,...}. Now < 3 > / < 12 > looks like {-9+ < 12 > —6+ < 12 >
=3+ <12 > < 12 >3+ < 12 >,64 < 12 >,94+ < 12 >} since multiples of 12 will be
absorbed by < 12 >. Recall aHH = bH if and only if b='a € H. Here this tells me that
because —(3) + —9 = —12, 3+ < 12 >= —9+4 < 12 >. Similarly, =3+ < 12 >= 9+ < 12 >,
and —6+ < 12 >=6+ <12 >. So, <3 >/ <12 >= {< 12 >34+ < 12 >, 6+ < 12 >
, 9+ < 12 >}. Notice that 3+ < 12 > has order 4 and hence generates all of <3 > / < 12 >.
Thus, < 3 > / < 12 > is cyclic of order 4, and hence isomorphic to Z,.

Now, consider < 8 > / < 48 >. Similar to before, it is clear that this group consists of
{< 48 >,84+ < 48 > 16+ < 48 >, 24+ < 48 >,32+ < 48 >, 40+ < 48 >}. Notice that still
similar to before 84 < 48 > is a generator of the quotient group and that the group has
order 48 divided by 8, or 6. Hence, it is isomorphic to Zg.

In general, suppose k divides n. Then < k > / < n > is of the form {<n > k+ <n >
2k+ <n>,...,(n—k)+ <n >} This is clearly cyclic with generator k+ < n > and has
order 7. Hence < k > / < n > is isomorphic to Zx.

#11: Let G =z, ®U(4), H =< (2,3) >, and K =< (2,1) >. Show that G/H is
not isomorphic to G/K. (This shows that H ~ K does not imply that
G/H ~G/K.)
For clarity, we write out each of the groups: G = {(0,1), (1,1),(2,1),(3,1),(0,3),(1,3),(2,3),(3,3)},
H ={(2,3),(0,1)}, and K = {(2,1),(0,1)}. Since H and K both have order 2, they are
both isomorphic to Zsy. Straight forward calculation shows,
G/H={H=(0,1)H =(2,3)H,(1,1)H = (3,3)H,(2,1)H = (0,3)H, (3,1)H = (1,3)H}
and

G/K = {K = (0,)K = (2, 1)K, (1, )K = (3, 1)K, (0,3)K = (2,3)K, (3,3)K = (1,3)K}

. Notice that each has 4 elements as expected since 4*2=8.



Consider (1,3)H: < (1,3)H >={(1,3)H,(2,1)H,(3,3)H,(0,1)H} = G/H. So, G/H is
cyclic of order 4, and hence is isomorphic to Zj.

However, observe that G/K is not cyclic since < (0,1)K >= {K}, < (1,1)K >=
(LK, (2 DK}, < (0,3)K >= {(0,3)K, (0, 1)K} and < (3,3)K >= {(3,3)K, (2, 1)K}.
In fact, we recognize that this structure is the Klein-4 group, Zs @ Zy. Hence G/H % G /K.

# 13: Prove that a factor group of an Abelian group is Abelian.

Let G be an Abelian group and consider its factor group G/H, where H is normal in
G. Let aH and bH be arbitrary elements of the quotient group. Then a HbH = (ab)H =
(ba)H = bHaH because G is Abelian. Hence the factor group is also Abelian.

# 14: What is the order of the element 14+ < 8 > in the factor group Zy/ < 8 >7

For completeness, observe < 8 >= {8,16,0} and Zy/ < 8 >={< 8 >, 1+ < 8 >,24+ <
8>3+ <8>,4+ <8> 5+ < 8> 6+ < 8> 7+ < 8>} Now let’s observe 14+ < 8 >:

(144 <8>)+ (14+ <8>) =28+ <8>=4+8, (14+ <8>)+ (4+ <8 >) =18+ <
8>=2+<8>, (14+ <8>)+ (2+ <8>=16+ <8 >=< 8>

Hence the order of 14 4+ 8 is 4.

# 16: Recall that Z(Dg) = {e,r*}. What is the order of the element rZ(Ds) in the
factor group Dg/Z(Dg)?

Notice that problem 16 here is rewritten in terms of generators and relations. Now it is
clear that the order of rZ(Ds) is 3 since r* € Z(Dg).

#17: Let G =2/ <20 > and H =<4 > / <20 >. List the elements of H and G/H.

Observe: <4 >={...,—8,-4,0,4,8,12,...} and < 20 >= {...—40, —20, 0, 20, 40, 60, . . .}.
Hence H = {< 20 >,44+ < 20 >,84 < 20 >, 124 < 20 >, 16+ < 20 >} ~ Zs.

Now notice that G = {< 20 >, 1+ < 20 >,24+ < 20 >,..., 19+ < 20 >} =~ Zy. So
G/H ={0+<20>+H,1+ <20 > +H,2+ <20 > +H,34+ <20 > +H} = Z4.

# 19: What is the order of the factor group (z,0 ® U(10))/ < (2,9) >?

[<(2,9)> — Iem(|2],]9]) — lem(5,2) ~ 10

The order of the factor group is Z22U00l _ __10x4 40 _ _ 40 _y

# 21: Prove that an Abelian group of order 33 is cyclic.

Let G be an Abelian group of order 33. By Theorem 9.5, there exists an element of G,
say a, such that |a| = 3 and an element of G, say b, such that |b| = 11. Since G is Abelian,
(ab)®3 = a3 = e so the order of ab divides 33. However, it is clear |ab| is not 1, 3, or 11.
Hence |ab] = 33 so ab € G generates G, and G is cyclic.



# 23: Determine the order of (Z®7)/ < (4,2) >. Is the group cyclic?

Notice that (1,1)+ < (4,2) > has infinite order [Why? Suppose it is of finite order, say
n. Then (n,n) €< (4,2) > which means (n,n) = k(4,2) for some k. So k = n/4 = n/2
or 4n = 2n which means n = 2n so n = 0 since n is an integer.]. Hence the group
(z®7)/ < (4,2) > also has infinite order.

If the quotient group is cyclic, it must be isomorphic to Z (from previous work) so every
non-identity element should have infinite order. However, (6,3)+ < (4,2) > has order 2.
Hence, it is not cyclic.

# 24: The group (Z4 & Z12)/ < (2,2) > is isomorphic to one of Zg, Z4 ® Z,, or
Zo P Zo P Zo. Determine which one by elimination.

Observe that H =< (2,2) >= {(2,2),(0,4),(2,6), (0,8),(2,10), (0,0)} (which has order
6 as expected). Let G = (Z4 @ Z12)/ < (2,2) >. Then
G={H,(1,0)H,(0,1)H,(1,1)H,(0,2)H, (0,3)H, (3,0)H, (1,3)H} and these cosets have or-
ders 1, 2, 4, 4, 2, 4, 4, and 2 respectively. Hence, G is not cyclic and not isomorphic to Zsg.
Further, since there is an element of order 4, GG is not isomorphic to Zy @ Zy & Z,. Hnece,
G~Z4DZs.

# 25: Let G = U(32) and H = {1,31}. The group G/H is isomorphic to one of Zs,
Zy ® Zso, OF Zoy @D Zo B Zy. Determine which one by elimination.

First, we know that the order of U(32) = 2° — 2% = 16 so G/H has order ¥ = 8 as
anticipated.

Consider 3H = {3,29} € G/H: < 3H >={3H,9H,27H,17TH,19H,25H 11H, H} so the
order of 3H is 8. Hence G/H =< 3H >~ Zs.

# 27: Let G =U(16), H = {1,15} and K = {1,9}. Are H and K isomorphic? Are
G/H and G/K isomorphic?

It is obvious that H ~ K ~ Z,. Now, we need to check if G/H and G/K are isomorphic.
We know that each has order 4 and that there are only two such groups. Consider 3H:
< 3H >= {3H,9H,11H,H} so 3H generates G/H and G/H =~ 7Z,. Now observe G/K:
< K >= {K},< 3K >= {3K,K},< 5K >= {bK,K} and < TK >= {7K,K}. Thus
G/K ~ 7y ® Zy. Hence G/K # G/H.

# 37: Let GG be a finite group and let H be a normal subgroup of G. Prove that
the order of the element gH in G/H must divide the order of g in G.

Let |g| = n. Then (gH)" = ¢g"H = e¢H = H so |gH| must divide n.

# 38: Let H be a normal subgroup of G and let a belong to . If the element
aH has order 3 in the group G/H and |H| = 10, what are the possibilities
for the order of a?



First, |G| = |aH| x |H| = 3 x 10 = 30. So |a| divides 30. But we also know, by the previ-
ous problem, that 3 also has to divide |a. Hence the possible orders for a are 3, 6, 15, and 30.

# 40: Let ¢ be an isomorphism from a group G onto a group G. Prove that if H
is a normal subgroup of G, then ¢(H) is a normal subgroup of G.

Let H be normal in G. We want to show yo¢(H)y~! C ¢(H) for all y € G = ¢(G). Since
y € ¢(Q), there exists an z € G such that y = ¢(z). Thus yo(H)y ' = ¢(x)p(H)(d(x)) ! =

¢(xHz™') = ¢(H) since H is normal in G, and we are done.

# 42: An element is called a square if it can be expressed in the form b? for some
b. Suppose that GG is an Abelian group and H is a subgroup of G. If every
element of H is a square and every element of G/H is a square, prove
that every element of G is a square. Does your proof remain valid when
“square” is replaced by “nth power” where n is any integer?

Let G be an Abelian group, H be a subgroup of G and every element of both H and
G/H be a square. Suppose g € G. Since g € G, gH € G/H. But all elements of G/H
are squares so there exists an aH € G/H such that gH = (aH)? = a?H. By properties of
cosets, we now have that (a?)~'g € H. But every element in H is a square so there exists a
b € H such that (a?)~'g = b. Solving for g we see g = a?b? = (ab)? since G is Abelian. But
this means that g is a square. Hence every element of GG is a square.

Notice that this did not depend on a property of 2 so the proof remains valid when 2 is
replaced by n € Z.

# 46: Show that D;; is isomorphic to Inn(D3).
First, recall that Z(D;3) = {e}. Now, we know that Inn(Di3) ~ D13/Z(D13) = Dss.

# 49: Suppose that G is a non-Abelian group of order p*® where p is prime and
Z(QG) # {e}. Prove that |Z(G)| = p.
First recall that Z(G) is normal in G. Since G is non-Abelian, Z(G) does not have order
p3. Farther, since Z(G) is a non-trivial subgroup, it’s order is not 1 and divides p? so it has
order p, or p*.

Suppose that the order of Z(G) is p?. Then |G/Z(G)| = p and hence the quotient group
G/Z(G) is cyclic. But this implies, by Theorem 9.3, that G is Abelian, which is a contra-
diction. Hence |Z(G)| = p*.

# 50: If |G| = pqg where p and ¢ are primes that are not necessarily distinct, prove
that |Z(G)| =1 or pq.

Let |G| = pq, as above. Since Z(@G) is a normal subgroup of G, |Z(G)| = 1,p, q, or pq. If
G is Abelian, |Z(G)| = pq.



Assume G is not Abelian. Without loss of generality, let | Z(G)| = p. Then |G/Z(G)| = g,
which is prime. Hence |G/Z(G)| is cyclic and G is Abelian. But this is a contradiction. Hence
|1Z(G)| = 1.

# 51: Let N be a normal subgroup of G and let H be a subgroup of G. If N is a
subgroup of H, prove that H/N is a normal subgroup of G/N if and only
if H is a normal subgroup of G.

Let N be a normal subgroup of G and let H be any subgroup of G. Assume N C H.

“=” Let H/N be normal in G/N. Then for all ygN € G/N and hN € H/N, (gN)(hN)(gN)™' =
(ghg ' )N € H/N. Thus ghg !N = I N for some h'inH. Hence ghg~' = h'n for some
ne€N. But W € Handn € H so h'n € H. Hence gHg™' C N. Thus H is normal in G.

“<"” The argument above reverses.

7# 56: Show that the intersection of two normal subgroups of G is a normal
subgroup of G. Generalize.

Let H and K be normal subgroups of G. Let x € HNK and g € G. Since z € H, gxg™!
is in H. Similarly, gzg=! is in K. Thus grg ' isin HNK forall g € G and x € HN K.
Thus, H N K is normal in G. Note that in a previous chapter we showed that H N K is a
subgroup of G, which completes the proof.

# 61: Let H be a normal subgroup of a finite group G and let + € G. If
gcd(|z],|G/H|) = 1, show that x € H.

Let ged(|z|,|G/H|) = 1 as above. From an earlier problem we know that |xH| must
divide |z|, so ged(|xH|,|G/H|) must also be 1. But we also know that |zH| must divide
|G/H| because xH is an element of this group. Hence |[xH| =1 so xH = H, which implies
e H.

# 63: If N is a normal subgroup of G and |G/N| = m, show that 2™ € N for all
in G.
Let # € G and |G/N| = m. Then 2N = (zN)™ = (zN)I¢N = N so 2™ € N.

# 68: Recall that a subgroup N of a group G is called characteristic if ¢(N) = N
for all automorphisms ¢ of G. If N is a characteristic subgroup of G, show
that N is a normal subgroup of G.

Let N be a characteristic subgroup of G. Then ¢(N) = N for all automorphisms of G.
In particular, ¢,(N) = N when ¢, is the conjugation map by g. Thus gNg~' = N for all
g € G. So N is normal in G.



Team Problem Solutions for Ch 9

#10: Let H = {(1),(12)(34)} in A,.

a. Show that H is not normal in Aj,.

We know that (123)H = {(123),(134)} and H(123) = {(123),(324)}. These are not
equal so H is not normal in Ay.

b. Referring to the multiplication table for A, in Table 5.1 on page 111, show
that, although agH = ayH and agH = a1 H, it is not true that agagH =
ara1H. Explain why this proves that the left cosets of H do not form a
group under coset multiplication.

agagH = (243)(132)H = (12)(34)H = H and azaq1 H = (142)(234)H = (14)(23)H # H.
This shows that multiplication is not well defined for these cosets and hence the left cosets
of H do not form a group under coset multiplication. This does not surprise us since we
know that normality was required for well-defined.

# 47: Suppose that N is a normal subgroup of a finite group G and H is a
subgroup of G. If |G/N| is prime, prove that H is contained in N or that
NH = G.

Let N be a normal subgroup of a finite group G, and H be any subgroup of G. Let
|G/N| = p, a prime. Now we know that N C NH C G. Therefore, p = |G : N| = |G :
NH|x|NH : N|. Thus |G : NH|ispor 1. If|G: NH| =1,then G=NH. If |G: NH| = p,
then [INH : N|=1so NH = N, which means that H C N.

# 65: If G is non-Abelian, show that Aut(G) is not cyclic.

Proof. Suppose not. Let Aut(G) be cyclic. Then Inn(G) is cyclic since Inn(G) is a subgroup
of Aut(G) and subgroups of cyclic groups are cyclic. We know that Inn(G) ~ G/Z(G) so
G/Z(G) must be cyclic. But this implies that G is Abelian, which is a contradiction. Thus
Aut(G) is not cyclic. O



