Practice Problems

1. If p(z) is a polynomial of degree greater than or equal to 2, show the sum of the residues of
ﬁ at all the zeros of p must be equal to 0.

Proof. p(z) is a polynomial, so it has finitely many zeros by, bo, ..., b,. Take R > 0 such that R >
max)_, |bx|. Then all the zeros of p(z) are contained interior the contour Cg, the circle of radius R
centered at 0, oriented counter-clockwise. So then

1
dz =2mi Y Resp(z) =2mi Res —
[p(z) kZ:lZ b, p(%)
Now if p(2) = amz™ + am_12™ 1 + ... + ag, with a,, # 0, then
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zQp(l) 22(amz™™ + Q127 ™+ L+ ag) At Q12+ e+ a2
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where m — 2 > 0 since the degree of p was assumed to be at least 2.
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So finally -———~————= is analytic at 0, since the denominator doesn’t vanish at 0 (as an, # 0),
therefore .
Res — —0:>2mZResp 2)=0= ZResp z2)=0
z=0 2 p(%) 12— k k=1%= b

2. Show informally that if v is a simple closed curve traveled counterclockwise, then
[f(z)dz = -2mi y ( Residues of f outside v, including oo)
.
Proof. Intuitively, v is a curve on the Riemann Sphere that on the one hand encloses all the residues
of f inside -, but on the other hand encloses all the poles of f outside 7 including co. However if

~ is positively oriented around the poles inside 7, it is negatively oriented around the poles outside
~. In symbols:

[f(z)dz - 2mi Y ( Residues of f inside v) =0
.

< f f(2)dz+2mi )y ( Residues of f outside v, including o0) =0
.

ff(z)dz = -2mi ) ( Residues of f outside 7, including oo)
.

Alternatively, you could apply the Theorem in section 77 (the one used in problem 1 above), to
show Res;-o f(2) = — Y Residues of f in C, from which the result follows.
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3. Evaluate f_o; %dm

Proof. Let f(z) = 1i24 and v = [-R, R] u CR, the boundary of the upper semi-circle of radius R.
3im 5im Tim

Then f is analytic away from the zeros of z*+1, which are z; = e T ,z0=€4 ,z1=e 4, and z4=€4 .
Only 21,29 € H, so for R > 1, z1, 29 lie inside . By the Residue Theorem,

2mi(Res () + Res () = [ f()dz= [ f@iz+ [ 1)

And now on Cg, |f(2)| < for R > 1, by the triangle inequality. So then

R4 1’
2

fCR F(2)dz < wRRf_

1—>0asR—>oo.

Therefore 2mi(Res,=z, f(z) + Resz=z, f(2)) = limp oo f_lz f(2)dz= [ %dw

22

423

3 3
z . -z —Z.
= =— = —k since zﬁ = -1. So now —t + 2 =

Finally Res,-., f(z) = Res;=z, % =

2k
3mi 97mi 3mi

F(er +et)=(e +e4)——z\/_

So [ lf; dz = 2mi(Res.-., f(2) + Res.—., f(2)) = 2miFiv2 =

E

4. Let a e R~ {0}. Evaluate [ cos(az) 4.

1+22

Proof. First we address the case a > 0. We apply Jordan’s Lemma to the function g(z) = €% f(2),
where f(2) = 1+ —3, and then we take real parts. Let v = [-R,R] U CR, as in problem 3. g is
holomorphic away from the poles of f, which are simple poles at ¢ and —i., where only i lies in the
upper half plane. So for R > 1 the Residue Theorem gives:

271'2'szfisg(z) = —/vg(z)d2= /CRg(z)der[jg(z)dz.

Since |f(2)| <

_R21_1 -0 as R — oo, Jordan’s Lemma implies

f g(z)dz - 0 as R — oo.
Cr

Thus, letting R — oo above, we have

2mi Resg(z) f

1+:1:2

= 2% So then

And finally, Res,-; g(2) = Res,-; €'%% 5 = ¢! L -

1+z 2z

Z=1

—-a

00 eiam e
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—a
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Taking real parts of both sides, gives us

* cos(ax) —a

5 dr = e
o 14z

When a < 0, a similar argument shows

f“’ cos(az) , _ o

—o0 1+$2

So finally we have Va # 0

/°° cos(aa:) d = re-lal

00 1+x2

5. Show that for p>0,q > 0 we have

> log(pz) ™
dz = —1
fo 220, 0g(pq)

Proof. Let g(z) = 10%? 22) Note to define log(pz) we have to define a branch cut, so let log(pz) =
In|z| +iarg(z), where -5 < arg(z) < 37” (i.e. with a branch along the non-positive imaginary axis).
Note log(pz) is not defined at the origin, so we’ll have to take our contour to be the boundary of an
upper half-disk, but with a small semicircle around the origin. Le. let v = [r, RJuCrU[-R, —r]uC},
where * denotes clockwise.

Note g is analytic in and on v, (for R sufficiently large, r sufficiently small), except at simple poles
log(piq) _ In(pg)+5

z = iq, —iq, where only igq lies inside 7. Furthermore, Res,—4; g(2) = i = 9ig (using p,q > 0)
_In(pg) | 7
2qi 4q

So by the Residue Theorem,

2m( HQ(ZI) ™ [g(z)dz— erg(z)dz+fCRg(z)dz+[RTg(z)dz—[Crg(z)dz

Now, | /¢, 9(2)dz| < ln(R)“T -0 as R — oo.
And | [ g(2)dz| < M —»0asr—0.
Further, f g(2)dz - [;° lzg(m)

2422

And [ g(2)dz - [~ log(pm) +70 [ qg+—2 (using the subsitution Z = —x)

q2+z2

Take real and imaginary parts above to conclude

min(pg) _ 2/“’ log(pz) _ /"" log(pz) _ mIn(pg)
0 0

q g2 + a2 )

¢+ a? 2q



6. How many zeroes does z* — 5z + 1 have in {1 < |z| < 2}? (Note: this is not the set {1 <|z| <2})

Proof. We apply Rouche’s Theorem to the function f(2) = 2* -5z +1

i) First we count the zeros in the set {|z| < 2} :
Let g1(2) = 2% Then on Cy = {|2| = 2},|f(2) = 91(2)| = | =5z + 1] < 5|z| + 1 = 11 < 16 = |g1(2)]|. So the
number of zeros of f in {|z| < 2} equals the number of zeros of g; in {|z| < 2} which is 4 (g1 has a
zero of order 4 at 0).

i) We now count the zeros in the set {|z| <1} :
Let go = —5z. Then on Cy = {|2| = 1},|f(2) —g2(2)| = |z* + 1| < |2|*+ 1 =2 < 5 = |g2(2)|. So the number
of zeros of f in {|z| < 1} equals the number of zeros of gy in {|z| < 1} which is 1 (g2 has a zero of
order 1 at 0).

Therefore f has 4 —1 =3 zeros on {|z| <2} N {|z| <1} = {1 < |z < 2}.

Finally, when |z| = 1,|f(2)| 2| - 52| - |2[* ~1=5-2=3>0= f(2) # 0 when |z| = 1. So f has 3
zeros on {1 <|z| < 2}.

O]

7. Show there is exactly one point z in the right half plane {z: Re(z) > 0} at which z+e7% = 2.
Hint: Consider the countour in the right half plane enclosing the (nearly) half disk bounded by
{|z| = R} and the vertical line Re(z) =€, for R > 3 and € > 0 small (so in particular, the ball of
radius 1 centered at 2 is contained inside the contour).

Proof. Let vy be the contour in the hint. Then using the fact |e?| = %%, on v we have |e™?| = e7F¢* <

eV = 1, since ~ lies in {z: Re(z) >0} and e® is a monotonically increasing (real) function.

Now let f(z)=z+e*-2and g(z)=2-2. On~, |f-g|=|e? <1<|z-2|=g(z), since the ball of
radius 1 centered at 2 is contained inside =, so all points on « are distance greater than 1 from 2.

So now applying Rouche’s Theorem, we have the number of zeros of f in 7 equals the number of
zeros of ¢ in «y, which equals 1, since z — 2 has a zero at 2, which is inside ~.

Finally, this is the only solution in the right half plane, because we can let R — co,e - 0, and
the previous argument remains valid (i.e. f still only has one zero inside 7). O
8. Show if p(2) = 2" + a,_12"' + ... + a1z + ag, then there must be at least one point zy with
|z0] = 1 such that |[p(z9)| > 1. Hint: If |p(z)| < 1 everywhere on {|z| = 1}, how many zeros must
q(2) = ap_12" 1+ ... + a1z + ap have?



Proof. Suppose for contradiction that [p(z)| < 1 everywhere on {|z| = 1}. Let g(2) = =2", f(z2) =
p(2) +g(2) = apn12"1 + ...+ a1z +ag = q(z). Then on {|z| = 1},

1f(2) = 9(2)| = p(2)| <1 =1" = |g(2)|

So by Rouche’s Theorem f and g have the same number of zeros in the unit disk. But this is a
contradiction, because g has n zeros in the unit disk, but f can have at most n — 1 zeros there,
being a polynomial of degree n — 1. O

9. Let f(2) = iﬁ What is the image under f of:
a. The real axis (Hint: this is a line)
b. {|z| =2} (Hint: this is a circle)
c. {|z| =1}

d. The imaginary axis

Proof. a. Since f is an LFT, f sends lines to circles or lines. So it suffices to check where three
distinct points of R are sent to find its image under f. Note f(1) =0, f(o0) =1, and f(-1) = o0
So f sends the real axis to the line through 0 and 1, i.e. the real axis.

b. Again, f is an LFT, so it sends circles to circles or lines. And f(2) = %, f(=2) =3, and f(2¢) =

’11:221” = %(—1 +2i)(1-27) = %(3 +44). Since these points don’t lie on a line, f maps {|z| = 2} to the

circle through these points.

c. Since f(-1) = oo, the image of {|z| = 1} is a line. To find which, we map two other points:
f(1) =0,f@4) = m = (=) 1) = —i. Thus f maps {|z| = 1} to the line through 0 and —i, i.e. the
imaginary axis.

d. You may recall f(z) = T maps the right half plane to the unit disk, sending the boundary to

the boundary. To veryify this, if z = iy, |f(2)| = |Zz+} [(-1) _l;yy_ll| =1, since —iy — 1 is the conjugate
of iy — 1. Thus the image of the imaginary axis under f is a subset of the unit circle. But since
f is invertible, and the imaginary axis is sent to a line or a circle, it follows that the f sends the
imaginary axis to the entire unit circle.

O

10. Suppose a,b,c,d € R ;ad > be. Show T'(z) = “Z+b leaves the upper half plane H invariant (i.e. T’
sends the upper half plane to itself).

Proof. First we note that since T is an LF'T, it sends lines to circles or lines. T clearly then sends

the real line to itself, since if z € R, both the numerator and denominator of T'(z) = Z;j’:g are real

numbers (if x = %l, then T'(z) = oo, which still lines on the real line).

Therefore by the continuity of 7, it suffices to check that T'(z¢) lands in the upper half plane, for any
20 € HL. So let 2o = i. Then T'(5) = 2tk = (rad(doc)) _ (bdrac)tilad=be) g 10n Iy (T(4)) = (245 5 0,
O

! ; ci+d c2+d? c2+d? “2vd?
since ad — be > 0, by assumption. Thus T'(¢) € H, so we're done.



11. Find a bijective conformal map that takes a bounded region of C to an unbounded region.

Proof. Take f(z) = % Then f sends the bounded set {0 < |z| < 1} to the unbounded set {|z| > 1}.
Moreover f is conformal on {0 < |z| < 1}, since f is analytic there, and f'(z) = ;—21 0, Vz €

C~ {0}, O

12. What is the image of the region A = {x +iy : xy > 1,2 > 0,y > 0} under the transformation
f(z)=2%7

Proof. Note, in the right half plane { Re(z) > 0}, f(2) = 22 is conformal, since f’(2) = 2z = 0 iff z = 0.
So it suffices to map the boundary of A and see where a point in the interior is sent. The boundary
of A is the part of the curve 2y = 1 in the first quadrant {z > 0,y > 0}. Now f(z+iy) = 2% —y*+i2zy,
so the image of xy =1 is the set v = 2 in the u,v plane. So now the interior point 2 + 2i = 22T
is sent to 8 under f. So the image of A under f is the set {v > 2}. O

13. Let A be the upper half of the unit disk {|z| < 1}. Find the temperature T inside A if the
circular portion of the boundary is insulated, and T =0 for 0 < x < 1 on the real axis, and 7" = 10
for —1 <z <0 on the real axis.

Proof. Use the map log(z) to make A to the half strip B = {u < 0,0 <v < 7} in the u,v plane, where
the temperature is 10 when v = m and 0 when v = 0. Then the in the half-strip, we have T = 1%.
Therefore the tempterature in the x,y plane is given by T'(x,y) = To(log(x +1iy)) = %mn’l(%). O

14. Consider the region the entire unit disk {|z| < 1}. The electric potential is maintained at ¢ =0
on the lower semicicle and at ¢ =1 on the upper semicircle. Find the value of ¢ inside.

Proof. We apply our general procedure for the Dirichlet problem by mapping the unit disk to the
upper half plane. We can do this with the LFT

1—&?2 _y2

So then u = ﬁ and v = D72 We can use the standard solution on the upper half plane:

1 1
do(u,v) =0+ —(1-0)tan"! Yo Ztant Y
s u u

The solution on the unit disk is then

z?2+y? -1
—)’

o(2,y) = do(f(2,9)) = do(u,v) = %tan_l ( 2

where the values of arctangent must be taken between 0 and 7. 0

15. Find the flow around the upper half of the unit circle if the velocity is parallel to the x
axis and is « at co. (Here A is the region of the upper-half plane exterior to the unit circle, i.e.
A={z: Im(z)>0,|z| > 1}.



Proof. Use the mapping z — z + % This maps A to the upper half plane, and Fy(z) = az is the
complex potential in the upper half plane, so the potential in A is given by F(z) = a(z + %) And

then ¢(r,0) = a(r + %) cos@,¢(r,0) = a(r - %) sin 6. O

16. Let f be analytic in a domain (open and connected) A, and let 21,29 € A. Let f’(21) # 0. Show
f is not constant on a neighborhood of zs.

Proof. Suppose for contraction f = ¢ constant, on a neighborhood B(zz,7) of zo. Then since
B(z2,7) c A (connected) has accumulation points (every point is one in fact), the Identity Principle
implies that f = ¢ constant on A, since {z € A: f(z) — ¢ =0}. has an accumulation point in A. But
if that were the case, then f'(z) =0 Vz € A, so in particular, f'(z1) = 0, a contraction. Therefore f
is non-constant on all neighborhoods of z,. O



