
Practice Problems

1. If p(z) is a polynomial of degree greater than or equal to 2, show the sum of the residues of
1

p(z) at all the zeros of p must be equal to 0.

Proof. p(z) is a polynomial, so it has finitely many zeros b1, b2, ..., bn. Take R > 0 such that R >

maxnk=1 ∣bk∣. Then all the zeros of p(z) are contained interior the contour CR, the circle of radius R
centered at 0, oriented counter-clockwise. So then

∫
γ

1

p(z)
dz = 2πi

n

∑
k=1

Res
z=bk

p(z) = 2πiRes
z=0

1

z2
1

p(1
z)

Now if p(z) = amz
m + am−1z

m−1 + ... + a0, with am ≠ 0, then

1

z2p(1
z)

=
1

z2(amz−m + am−1z−m+1 + ... + a0)
=

zm−2

am + am−1z + ... + a0zm
,

where m − 2 ≥ 0 since the degree of p was assumed to be at least 2.

So finally zm−2

am+am−1z+...+a0zm
is analytic at 0, since the denominator doesn’t vanish at 0 (as am ≠ 0),

therefore

Res
z=0

1

z2
1

p(1
z)

= 0⇒ 2πi
n

∑
k=1

Res
z=bk

p(z) = 0⇒
n

∑
k=1

Res
z=bk

p(z) = 0

2. Show informally that if γ is a simple closed curve traveled counterclockwise, then

∫
γ
f(z)dz = −2πi∑( Residues of f outside γ, including ∞)

Proof. Intuitively, γ is a curve on the Riemann Sphere that on the one hand encloses all the residues
of f inside γ, but on the other hand encloses all the poles of f outside γ including ∞. However if
γ is positively oriented around the poles inside γ, it is negatively oriented around the poles outside
γ. In symbols:

∫
γ
f(z)dz − 2πi∑( Residues of f inside γ) = 0

⇔∫
γ
f(z)dz + 2πi∑( Residues of f outside γ, including ∞) = 0

∫
γ
f(z)dz = −2πi∑( Residues of f outside γ, including ∞)

.

Alternatively, you could apply the Theorem in section 77 (the one used in problem 1 above), to
show Resz=∞ f(z) = −∑ Residues of f in C, from which the result follows.
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3. Evaluate ∫
∞

−∞
x2

1+x4
dx

Proof. Let f(z) = z2

1+z4
and γ = [−R,R] ∪ CR, the boundary of the upper semi-circle of radius R.

Then f is analytic away from the zeros of z4+1, which are z1 = e
iπ
4 , z2 = e

3iπ
4 , z1 = e

5iπ
4 , and z4 = e

7iπ
4 .

Only z1, z2 ∈ H, so for R > 1, z1, z2 lie inside γ. By the Residue Theorem,

2πi(Res
z=z1

f(z) +Res
z=z2

f(z)) = ∫
γ
f(z)dz = ∫

CR
f(z)dz + ∫

R

−R
f(z)dz.

And now on CR, ∣f(z)∣ ≤ R2

R4−1
, for R > 1, by the triangle inequality. So then

∫
CR
f(z)dz ≤ πR

R2

R4 − 1
→ 0 as R →∞.

Therefore 2πi(Resz=z1 f(z) +Resz=z2 f(z)) = limR→∞ ∫
R
−R f(z)dz = ∫

∞

−∞
x2

1+x4
dx

Finally Resz=zk f(z) = Resz=zk
z2

1+z4
= z2

4z3
∣
zk

= 1
4zk

=
−z3k
4 , since z4k = −1. So now

−z31
4 +

−z32
4 =

−1
4 (e

3πi
4 + e

9πi
4 ) = −1

4 (e
3πi
4 + e

9πi
4 ) = −1

4 i
√

2.

So ∫
∞

−∞
x2

1+x4
dx = 2πi(Resz=z1 f(z) +Resz=z2 f(z)) = 2πi−14 i

√
2 = π

√
2
2 = π√

2
.

4. Let a ∈ R ∖ {0}. Evaluate ∫
∞

−∞

cos(ax)
1+x2

dx

Proof. First we address the case a > 0. We apply Jordan’s Lemma to the function g(z) = eiazf(z),
where f(z) = 1

1+z2
, and then we take real parts. Let γ = [−R,R] ∪ CR, as in problem 3. g is

holomorphic away from the poles of f , which are simple poles at i and −i., where only i lies in the
upper half plane. So for R > 1 the Residue Theorem gives:

2πiRes
z=i

g(z) = ∫
γ
g(z)dz = ∫

CR
g(z)dz + ∫

R

−R
g(z)dz.

Since ∣f(z)∣ ≤ 1
R2−1

→ 0 as R →∞, Jordan’s Lemma implies

∫
CR
g(z)dz → 0 as R →∞.

Thus, letting R →∞ above, we have

2πiRes
z=i

g(z) = ∫
∞

−∞

eiax

1 + x2
dx.

And finally, Resz=i g(z) = Resz=i e
iaz 1

1+z2
= eiaz 1

2z ∣z=i
= e−a

2i . So then

∫

∞

−∞

eiax

1 + x2
dx = 2πiRes

z=i
g(z) = 2πi

e−a

2i
= πe−a.
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Taking real parts of both sides, gives us

∫

∞

−∞

cos(ax)

1 + x2
dx = πe−a

When a < 0, a similar argument shows

∫

∞

−∞

cos(ax)

1 + x2
dx = πea.

So finally we have ∀a ≠ 0

∫

∞

−∞

cos(ax)

1 + x2
dx = πe−∣a∣

5. Show that for p > 0, q > 0 we have

∫

∞

0

log(px)

q2 + x2
dx =

π

2q
log(pq)

Proof. Let g(z) =
log(pz)
q2+z2

. Note to define log(pz) we have to define a branch cut, so let log(pz) =

ln ∣z∣ + iarg(z), where −π2 < arg(z) < 3π
2 (i.e. with a branch along the non-positive imaginary axis).

Note log(pz) is not defined at the origin, so we’ll have to take our contour to be the boundary of an
upper half-disk, but with a small semicircle around the origin. I.e. let γ = [r,R]∪CR∪[−R,−r]∪C

∗
r ,

where * denotes clockwise.

Note g is analytic in and on γ, (for R sufficiently large, r sufficiently small), except at simple poles

z = iq,−iq, where only iq lies inside γ. Furthermore, Resz=qi g(z) =
log(piq)

2iq =
ln(pq)+ iπ

2

2iq (using p, q > 0)

=
ln(pq)
2qi + π

4q .

So by the Residue Theorem,

2πi(
ln(pq)

2qi
+
π

4q
) = ∫

γ
g(z)dz = ∫

R

r
g(z)dz + ∫

CR
g(z)dz + ∫

−r

−R
g(z)dz − ∫

Cr
g(z)dz

Now, ∣ ∫CR
g(z)dz∣ ≤

ln(R)+π
R2−q2

→ 0 as R →∞.

And ∣ ∫Cr g(z)dz∣ ≤
∣ ln(r)∣+π
q2−r2

→ 0 as r → 0.

Further, ∫
R
r g(z)dz → ∫

∞

0
log(px)
q2+x2

And ∫
−r
−R g(z)dz → ∫

∞

0
log(px)
q2+x2

+ πi ∫
∞

0
1

q2+x2
(using the subsitution x̃ = −x)

Take real and imaginary parts above to conclude

π ln(pq)

q
= 2∫

∞

0

log(px)

q2 + x2
⇒ ∫

∞

0

log(px)

q2 + x2
=
π ln(pq)

2q
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6. How many zeroes does z4 − 5z + 1 have in {1 < ∣z∣ < 2}? (Note: this is not the set {1 ≤ ∣z∣ < 2})

Proof. We apply Rouche’s Theorem to the function f(z) = z4 − 5z + 1

i) First we count the zeros in the set {∣z∣ < 2} ∶
Let g1(z) = z

4. Then on C2 = {∣z∣ = 2}, ∣f(z) − g1(z)∣ = ∣ − 5z + 1∣ ≤ 5∣z∣ + 1 = 11 < 16 = ∣g1(z)∣. So the
number of zeros of f in {∣z∣ < 2} equals the number of zeros of g1 in {∣z∣ < 2} which is 4 (g1 has a
zero of order 4 at 0).

ii) We now count the zeros in the set {∣z∣ < 1} ∶
Let g2 = −5z. Then on C1 = {∣z∣ = 1}, ∣f(z)−g2(z)∣ = ∣z4+1∣ ≤ ∣z∣4+1 = 2 < 5 = ∣g2(z)∣. So the number
of zeros of f in {∣z∣ < 1} equals the number of zeros of g2 in {∣z∣ < 1} which is 1 (g2 has a zero of
order 1 at 0).

Therefore f has 4 − 1 = 3 zeros on {∣z∣ < 2} ∖ {∣z∣ < 1} = {1 ≤ ∣z∣ < 2}.

Finally, when ∣z∣ = 1, ∣f(z)∣ ≥ ∣ − 5z∣ − ∣z∣4 − 1 = 5 − 2 = 3 > 0 ⇒ f(z) ≠ 0 when ∣z∣ = 1. So f has 3
zeros on {1 < ∣z∣ < 2}.

7. Show there is exactly one point z in the right half plane {z ∶ Re(z) > 0} at which z + e−z = 2.
Hint: Consider the countour in the right half plane enclosing the (nearly) half disk bounded by
{∣z∣ = R} and the vertical line Re(z) = ε, for R > 3 and ε > 0 small (so in particular, the ball of
radius 1 centered at 2 is contained inside the contour).

Proof. Let γ be the contour in the hint. Then using the fact ∣ez ∣ = eRez, on γ we have ∣e−z ∣ = e−Rez <
e0 = 1, since γ lies in {z ∶ Re(z) > 0} and ex is a monotonically increasing (real) function.

Now let f(z) = z + e−z − 2 and g(z) = z − 2. On γ, ∣f − g∣ = ∣e−z ∣ < 1 < ∣z − 2∣ = g(z), since the ball of
radius 1 centered at 2 is contained inside γ, so all points on γ are distance greater than 1 from 2.

So now applying Rouche’s Theorem, we have the number of zeros of f in γ equals the number of
zeros of g in γ, which equals 1, since z − 2 has a zero at 2, which is inside γ.

Finally, this is the only solution in the right half plane, because we can let R → ∞, ε → 0, and
the previous argument remains valid (i.e. f still only has one zero inside γ).

8. Show if p(z) = zn + an−1z
n−1 + ... + a1z + a0, then there must be at least one point z0 with

∣z0∣ = 1 such that ∣p(z0)∣ ≥ 1. Hint: If ∣p(z)∣ < 1 everywhere on {∣z∣ = 1}, how many zeros must
q(z) = an−1z

n−1 + ... + a1z + a0 have?
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Proof. Suppose for contradiction that ∣p(z)∣ < 1 everywhere on {∣z∣ = 1}. Let g(z) = −zn, f(z) =
p(z) + g(z) = an−1z

n−1 + ... + a1z + a0 = q(z). Then on {∣z∣ = 1},

∣f(z) − g(z)∣ = ∣p(z)∣ < 1 = 1n = ∣g(z)∣.

So by Rouche’s Theorem f and g have the same number of zeros in the unit disk. But this is a
contradiction, because g has n zeros in the unit disk, but f can have at most n − 1 zeros there,
being a polynomial of degree n − 1.

9. Let f(z) = z−1
z+1 . What is the image under f of:

a. The real axis (Hint: this is a line)
b. {∣z∣ = 2} (Hint: this is a circle)
c. {∣z∣ = 1}
d. The imaginary axis

Proof. a. Since f is an LFT, f sends lines to circles or lines. So it suffices to check where three
distinct points of R are sent to find its image under f . Note f(1) = 0, f(∞) = 1, and f(−1) = ∞.
So f sends the real axis to the line through 0 and 1, i.e. the real axis.

b. Again, f is an LFT, so it sends circles to circles or lines. And f(2) = 1
3 , f(−2) = 3, and f(2i) =

−1+2i
1+2i = 1

5(−1 + 2i)(1 − 2i) = 1
5(3 + 4i). Since these points don’t lie on a line, f maps {∣z∣ = 2} to the

circle through these points.

c. Since f(−1) = ∞, the image of {∣z∣ = 1} is a line. To find which, we map two other points:

f(1) = 0, f(i) = i−1
i+1 =

(i−1)2

2 = −i. Thus f maps {∣z∣ = 1} to the line through 0 and −i, i.e. the
imaginary axis.

d. You may recall f(z) = z−1
z+1 maps the right half plane to the unit disk, sending the boundary to

the boundary. To veryify this, if z = iy, ∣f(z)∣ = ∣
iy−1
iy+1 = ∣(−1) iy−1

−iy−1 ∣ = 1, since −iy−1 is the conjugate
of iy − 1. Thus the image of the imaginary axis under f is a subset of the unit circle. But since
f is invertible, and the imaginary axis is sent to a line or a circle, it follows that the f sends the
imaginary axis to the entire unit circle.

10. Suppose a, b, c, d ∈ R, ad > bc. Show T (z) = az+b
cz+d leaves the upper half plane H invariant (i.e. T

sends the upper half plane to itself).

Proof. First we note that since T is an LFT, it sends lines to circles or lines. T clearly then sends
the real line to itself, since if x ∈ R, both the numerator and denominator of T (x) = ax+b

cx+d are real

numbers (if x = −d
c , then T (x) = ∞, which still lines on the real line).

Therefore by the continuity of T, it suffices to check that T (z0) lands in the upper half plane, for any

z0 ∈ H. So let z0 = i. Then T (i) = ai+b
ci+d =

(b+ai)(d−ci)
c2+d2

=
(bd+ac)+i(ad−bc)

c2+d2
. So then Im(T (i)) =

(ad−bc)
c2+d2

> 0,
since ad − bc > 0, by assumption. Thus T (i) ∈ H, so we’re done.
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11. Find a bijective conformal map that takes a bounded region of C to an unbounded region.

Proof. Take f(z) = 1
z . Then f sends the bounded set {0 < ∣z∣ < 1} to the unbounded set {∣z∣ > 1}.

Moreover f is conformal on {0 < ∣z∣ < 1}, since f is analytic there, and f ′(z) = −1
z2

≠ 0, ∀z ∈

C ∖ {0},

12. What is the image of the region A = {x + iy ∶ xy > 1, x > 0, y > 0} under the transformation
f(z) = z2?

Proof. Note, in the right half plane {Re(z) > 0}, f(z) = z2 is conformal, since f ′(z) = 2z = 0 iff z = 0.
So it suffices to map the boundary of A and see where a point in the interior is sent. The boundary
of A is the part of the curve xy = 1 in the first quadrant {x > 0, y > 0}. Now f(x+iy) = x2−y2+i2xy,

so the image of xy = 1 is the set v = 2 in the u, v plane. So now the interior point 2 + 2i = 2
√

2e
iπ
4

is sent to 8i under f. So the image of A under f is the set {v > 2}.

13. Let A be the upper half of the unit disk {∣z∣ < 1}. Find the temperature T inside A if the
circular portion of the boundary is insulated, and T = 0 for 0 < x < 1 on the real axis, and T = 10
for −1 < x < 0 on the real axis.

Proof. Use the map log(z) to make A to the half strip B = {u < 0,0 < v < π} in the u, v plane, where
the temperature is 10 when v = π and 0 when v = 0. Then the in the half-strip, we have T0 =

10v
π .

Therefore the tempterature in the x, y plane is given by T (x, y) = T0(log(x+ iy)) = 10
π tan

−1(
y
x).

14. Consider the region the entire unit disk {∣z∣ < 1}. The electric potential is maintained at φ = 0
on the lower semicicle and at φ = 1 on the upper semicircle. Find the value of φ inside.

Proof. We apply our general procedure for the Dirichlet problem by mapping the unit disk to the
upper half plane. We can do this with the LFT

u + iv = f(x + iy) = f(z) =
1

i

z + 1

z − 1
=

1

i

(x + 1) + iy

(x − 1) + iy

So then u = −2y
(x−1)2+y2

and v = 1−x2−y2

(x−1)2+y2
. We can use the standard solution on the upper half plane:

φ0(u, v) = 0 +
1

π
(1 − 0) tan−1

v

u
=

1

π
tan−1

v

u

The solution on the unit disk is then

φ(x, y) = φ0(f(x, y)) = φ0(u, v) =
1

π
tan−1 (

x2 + y2 − 1

2
),

where the values of arctangent must be taken between 0 and π.

15. Find the flow around the upper half of the unit circle if the velocity is parallel to the x
axis and is α at ∞. (Here A is the region of the upper-half plane exterior to the unit circle, i.e.
A = {z : Im(z) > 0, ∣z∣ > 1}.
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Proof. Use the mapping z ↦ z + 1
z . This maps A to the upper half plane, and F0(z) = αz is the

complex potential in the upper half plane, so the potential in A is given by F (z) = α(z + 1
z ). And

then φ(r, θ) = α(r + 1
r) cos θ,ψ(r, θ) = α(r − 1

r) sin θ.

16. Let f be analytic in a domain (open and connected) A, and let z1, z2 ∈ A. Let f ′(z1) ≠ 0. Show
f is not constant on a neighborhood of z2.

Proof. Suppose for contraction f = c constant, on a neighborhood B(z2, r) of z2. Then since
B(z2, r) ⊂ A (connected) has accumulation points (every point is one in fact), the Identity Principle
implies that f = c constant on A, since {z ∈ A ∶ f(z) − c = 0}. has an accumulation point in A. But
if that were the case, then f ′(z) = 0 ∀z ∈ A, so in particular, f ′(z1) = 0, a contraction. Therefore f
is non-constant on all neighborhoods of z2.
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