
Day 2: Metric spaces and topology

Definition. A set E is countable if a bijective function f : E → N exists.

Proposition 1.1.

i) If a surjective function g : E → F exists and E is countable, then F is countable.

ii) If an injective function h : E → F exists and F is countable, then E is countable.

iii) If each Ej is countable for j = 1, 2, . . ., then
⋃∞

j=1Ej is countable.

Definition. A metric space is a pair (X, d) consisting of a set X along with a function d : X×X → R
such that for any p, q ∈ X,

i) d(p, q) > 0 if p 6= q; d(p, p) = 0

ii) d(p, q) = d(q, p)

iii) d(p, q) ≤ d(p, r) + d(r, q) for any r ∈ X.

The metric d gives rise to a topology on X with basis given by the neighborhoods

Nr(p) = {x ∈ X : d(x, p) < r}.

A set G ⊂ X is open this topology if every point in G is an interior point. A metric space is called
separable if it contains a countable dense subset.

Definition. A normed space (X, || · ||) is a vector space X over a field F (nearly always R or C)
along with a norm || · || : X → R such that for all x, y ∈ X,

i) ||x|| > 0 if x 6= 0, ||0|| = 0.

ii) ||αx|| = |α|||x|| for α ∈ F.

iii) ||x+ y|| ≤ ||x||+ ||y||.

Every normed space (X, || · ||) is a metric space by taking d(x, y) = ||x − y||. The converse is not
true in general—even if X is a vector space.

Definition. An inner product space is a vector space X over a field F = R or C along with an inner
product 〈·, ·〉 : X ×X → F such that for all x, y, z ∈ X,

i) 〈x, y〉 = 〈y, x〉.

ii) 〈αx+ y, z〉 = α〈x, z〉+ 〈y, z〉.

iii) 〈x, x〉 ≥ 0, and if 〈x, x〉 = 0 then x = 0.

Every inner product space is a normed space via the induced norm ||x|| :=
√
〈x, x〉.

Theorem 1.2 (Heine-Borel / Rud76, Thm. 2.41). If E ⊂ Rn has any one of these properties, then
it has the other two:

i) E is closed and bounded.

ii) E is compact.

iii) Every infinite subset of E has a limit point in E.

Note that the assumption that E is a subset of Rn (with the usual topology) is essential.
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Theorem 1.3 (Weierstrass / Rud76, Thm. 2.42). Every bounded infinite subset of Rn has a limit
point in Rn.

Proposition 1.4. Every open set G ⊂ R can be written as a finite or countable union of disjoint
open intervals (aj , bj) with at most one aj = −∞ and at most one bj =∞.

Definition. A metric space (X, d) is connected if whenever U, V ⊆ X are open and satisfy U∩V = ∅
and U ∪ V = X, then either U = ∅ or V = ∅.

Warm-up problems. Throughout, X is a metric space.

1) State the definition of what it means for a set K ⊂ X to be compact, including the definition
of open cover.

2) (June 2010 #2b) Prove that {1/n : n ∈ Z\{0}}∪{0} is compact using the above definition.

3) Is the set of all sequences x1, x2, . . . with xi ∈ {0, 1} for i = 1, 2, . . . countable?

4) Show that an inner product space satisfies the parallelogram law with its induced norm:

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2.
(For simplicity, you may assume that this is an inner product space over R.)

5) (January 2010 #1a partial) Determine whether or not the sets {(x, y) ∈ R2 : x + y < 3}
and {f ∈ C([−1, 1]) : f(0) = 0} are open, closed, or compact, where C([−1, 1]) is considered
with ‖ · ‖∞.

Problems.

6) (May 2019, #1) Let (M,dM ), (N, dN ) be metric spaces. Define dM×N : (M×N)×(M×N)→
R by

dM×N ((x1, y1), (x2, y2)) := dM (x1, x2) + dN (y1, y2).

1) Prove that (M ×N, dM×N ) is a metric space.

2) Let S ⊆ M and T ⊆ N be compact sets in (M,dM ) and (N, dN ), respectively. Prove
that S × T is a compact set in (M ×N, dM×n).

7) (June 2003, #1b,c) (b) Show by example that the union of infinitely many compact subsets
of a metric space need not be compact. (c) If (X, d) is a metric space and K ⊂ X is
compact, define d(x0,K) = infy∈K d(x0, y). Prove that there exists a point y0 ∈ K such
that d(x0,K) = d(x0, y0).

8) (January 2009, #4a) Consider the metric space (Q, d) where Q denotes the rational numbers
and d(x, y) = |x− y|. Let E = {x ∈ Q : x > 0, 2 < x2 < 3}. Is E closed and bounded in Q?
Is E compact in Q?

9) (January 2011 #3a) Let (X, d) be a metric space, K ⊂ X be compact, and F ⊂ X be closed.
If K ∩ F = ∅, prove that there exists an ε > 0 so that d(k, f) ≥ ε for all k ∈ K and f ∈ F .

10) Let (X, d) be an unbounded and connected metric space. Prove that for each x0 ∈ X, the
set {x ∈ X : d(x, x0) = r} is nonempty.
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Additional Problems.

11) Show that if f : R→ R is monotone increasing, then f has at most a countable set of jump
discontinuities.

12) Prove Proposition 1.4.

13) Verify the remark following the definition of normed space.


