DAYy 2: METRIC SPACES AND TOPOLOGY

Definition. A set F is countable if a bijective function f : E — N exists.
Proposition 1.1.
i) If a surjective function g : E — F exists and E is countable, then F' is countable.
it) If an injective function h: E — F exists and F is countable, then E is countable.
i) If each E; is countable for j =1,2,..., then U;’il E; is countable.

Definition. A metric space is a pair (X, d) consisting of a set X along with a functiond : X x X — R
such that for any p,q € X,

i) d(p,q) > 0if p # g; d(p,p) =0
i) d(p,q) = d(q,p)
iil) d(p,q) < d(p,r) + d(r,q) for any r € X.

The metric d gives rise to a topology on X with basis given by the neighborhoods
N.(p) ={z € X : d(z,p) <r}.

A set G C X is open this topology if every point in G is an interior point. A metric space is called
separable if it contains a countable dense subset.

Definition. A normed space (X,||-||) is a vector space X over a field F (nearly always R or C)
along with a norm || - || : X — R such that for all 2,y € X,

i) [lz[| > 0'if 2 # 0, [[0]| = 0.
i) ||az|| = [afllz]| for a € F.
iii) [z +yll < [lzl] + [lyll-

Every normed space (X, || -||) is a metric space by taking d(z,y) = ||z — y||- The converse is not
true in general—even if X is a vector space.

Definition. An inner product space is a vector space X over a field F = R or C along with an inner
product (-,-) : X x X — F such that for all z,y,z € X,

i) (z,y) = (y, ).
i) (ax+y,z2) =az,z) + (y,2).
iii) (x,x) >0, and if (z,z) = 0 then z = 0.
Every inner product space is a normed space via the induced norm ||z|| := \/(x, z).

Theorem 1.2 (Heine-Borel / Rud76, Thm. 2.41). If E C R™ has any one of these properties, then
it has the other two:

i) E is closed and bounded.
it) E is compact.
i11) Fvery infinite subset of E has a limit point in F.

Note that the assumption that E is a subset of R™ (with the usual topology) is essential.
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Theorem 1.3 (Weierstrass / Rud76, Thm. 2.42). Fuvery bounded infinite subset of R™ has a limit
point in R™.

Proposition 1.4. Every open set G C R can be written as a finite or countable union of disjoint
open intervals (aj,b;) with at most one aj = —oo and at most one b; = oco.

Definition. A metric space (X, d) is connected if whenever U,V C X are open and satisfy UNV = ()
and U UV = X, then either U = or V = 0.

Warm-up problems. Throughout, X is a metric space.

1) State the definition of what it means for a set K C X to be compact, including the definition
of open cover.

2) (June 2010 #2b) Prove that {1/n:n € Z\ {0}} U{0} is compact using the above definition.
3) Is the set of all sequences z1, g, ... with ; € {0,1} for ¢ = 1,2, ... countable?

4) Show that an inner product space satisfies the parallelogram law with its induced norm:
[z +y|? + |z = yl* = 2[J2[]* + 2[ly||*.
(For simplicity, you may assume that this is an inner product space over R.)

5) (January 2010 #1la partial) Determine whether or not the sets {(z,y) € R? : x +y < 3}
and {f € C([-1,1]) : f(0) = 0} are open, closed, or compact, where C'([—1,1]) is considered

with || - ||eo-
Problems.
6) (May 2019, #1) Let (M, das), (N, dn) be metric spaces. Define dpsxn: (MXN)x(MXxN) —
R by

darxn (1, 91), (w2, y2)) == dar (1, 22) + dn (Y1, y2)-
1) Prove that (M x N,dpr« ) is a metric space.

2) Let S € M and T'C N be compact sets in (M,dpr) and (N,dn), respectively. Prove
that S x T is a compact set in (M X N, dprxn)-

7) (June 2003, #1b,c) (b) Show by example that the union of infinitely many compact subsets
of a metric space need not be compact. (c) If (X,d) is a metric space and K C X is
compact, define d(zg, K) = infycx d(zo,y). Prove that there exists a point yo € K such
that d(x(),K) = d(ll?g,yo).

8) (January 2009, #4a) Consider the metric space (Q, d) where Q denotes the rational numbers
and d(z,y) = |z —y|. Let E={z € Q:2 >0, 2 < 2% < 3}. Is F closed and bounded in Q?
Is E compact in Q7

9) (January 2011 #3a) Let (X, d) be a metric space, K C X be compact, and F' C X be closed.
If KN F =0, prove that there exists an € > 0 so that d(k, f) > efor all k € K and f € F.

10) Let (X,d) be an unbounded and connected metric space. Prove that for each xg € X, the
set {z € X : d(x,x0) = r} is nonempty.



Additional Problems.

11) Show that if f : R — R is monotone increasing, then f has at most a countable set of jump
discontinuities.

12) Prove Proposition 1.4.

13) Verify the remark following the definition of normed space.



