
Day 3: Sequences and series

Relevant information. A metric space (X, d) is called complete if every Cauchy sequence in X
converges in X. For a real-valued sequence {ak} the limit superior and inferior are given by

lim sup
n→∞

an = lim
n→∞

sup{ak : k ≥ n}

lim inf
n→∞

an = lim
n→∞

inf{ak : k ≥ n}

Note that {an} converges to L ∈ R if and only if lim sup an = lim inf an = L.

Theorem 2.1 (c.f. [Rud76, Thm. 3.14]). A monotone increasing (resp., decreasing) sequence
converges if and only if it is bounded above (resp., below).

Theorem 2.2 (“nth term test” / [Rud76, Thm. 3.23]). If
∑∞

k=1 ak converges, then limk→∞ ak = 0.

Theorem 2.3 (Cauchy condensation test / [Rud76, Thm. 3.27]). If a1 ≥ a2 ≥ · · · ≥ 0 then∑∞
n=1 an converges if and only if

∑∞
k=1 2ka2k converges.

Theorem 2.4 (Root test / [Rud76, Thm. 3.33]). Set α = lim supn→∞
n
√
|an|. Then,

i) If α < 1, then
∑
an converges;

ii) If α > 1, then
∑
an diverges;

iii) If α = 1, the test gives no information.

Theorem 2.5 (Ratio test / [Rud76, Thm. 3.34]). The series
∑
an

• converges if lim supn→∞

∣∣∣an+1

an

∣∣∣ < 1;

• diverges if
∣∣∣an+1

an

∣∣∣ ≥ 1 for all n ≥ n0.

Theorem 2.6 ([Rud76, Thm. 3.39]). Given the power series
∑
cnz

n, put

α = lim sup
n→∞

n
√
|cn|, R =

1

α
.

Then
∑
cnz

n converges if |z| < R and diverges if |z| > R. R is called the radius of convergence of∑
cnz

n.

Warm-up problems.

1) For a real sequence {xn}, if limn→∞ xn = x and limn→∞ xn = y then x = y.

2) If X is a metric space, E ⊂ X, and x is a limit point of E, then there exists a sequence
{xn} ⊂ E which converges to x.

3) (January 2003 #1) Let {ak} be a sequence of real numbers such that the series
∑∞

k=1 ak
converges and

∑∞
k=1 a

2
k diverges. Prove that

∑∞
k=1 ak does not converge absolutely.

(See also June 2010 #3a where you are instead told that
∑∞

k=1 akak+1 diverges and asked
to show the same result. Compare this to June 2009 #3a and January 2005 #1b.)

4) ([KRD10, #3.1.D]) Let {an} be a sequence such that limn→∞ |an| = 0. Prove that there is
a subsequence of {ank

} of {an} such that
∑∞

k=1 ank
converges.

5) (c.f. [Abb01, Exercise 2.4.5]) Let x1 = 2 and define

xn+1 =
1

2

(
xn +

2

xn

)
.

Find limn→∞ xn. Hint: Show that {xn} is decreasing.
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Problems.

6) (June 2013 #1a) Let an =
√
n
(√
n+ 1−

√
n
)
. Prove that limn→∞ an = 1/2.

7) (January 2014 #2) (a) Produce sequences {an}, {bn} of positive real numbers such that

lim inf
n→∞

(anbn) >
(

lim inf
n→∞

an

)(
lim inf
n→∞

bn

)
.

(b) If {an}, {bn} are sequences of positive real numbers and {an} converges, prove that

lim inf
n→∞

(anbn) =
(

lim
n→∞

an

)(
lim inf
n→∞

bn

)
.

8) (May 2011 #4a) Determine the values of x ∈ R for which

∞∑
n=1

xn

1 + n|x|n
converges, justifying

your answer carefully.

9) (June 2005 #3b) If the series
∑∞

n=0 an converges conditionally, show that the radius of
convergence of the power series

∑∞
n=0 anx

n is 1.

10) (January 2011 #5) Suppose {an} is a sequence of positive real numbers such that limn→∞ an =
0 and

∑
an diverges. Prove that for all x > 0 there exist integers n(1) < n(2) < . . . such

that
∑∞

k=1 an(k) = x.
(Note: Many variations on this problem are possible including more general rearrangements.
You may also wish to show that if

∑
an converges conditionally then given any x ∈ R there

is a rearrangement of {bn} of {an} such that
∑
bn = r. See Rudin Thm. 3.54 for a further

generalization.)

11) (June 2008 # 4b) Assume β > 0, an > 0, n = 1, 2, . . ., and the series
∑
an is divergent.

Show that
∑ an

β + an
is also divergent.

More Problems.

12) (January 2012 #1a) Let {an}, {bn} be bounded sequences of positive real numbers. If
∑
bn

is convergent, show that
∑
anbn is also convergent.

13) Assume that Theorem 2.4 (the root test) is true and prove the ratio test (Theorem 2.5).

14) (January 2008 #6b) Suppose that limn→∞ sn = s and limn→∞ tn = t with s 6= t and sn 6= tn
for all n. Use and ε-δ proof to show that

lim
n→∞

sn + tn
sn − tn

=
s+ t

s− t
.

15) Prove theorems 2.1, 2.2, and 2.3.

16) (January 2006 #5) Let am,n ≥ 0 for m,n ∈ N and assume that the partial sums

M∑
m=1

N∑
n=1

am,n

are bounded above. Prove carefully that
∑∞

m=1 (
∑∞

n=1 am,n) and
∑∞

n=1 (
∑∞

m=1 am,n) exist
and are equal.
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