DAY 4: CONTINUITY OF FUNCTIONS

Proposition 3.1 ([KRD10, Thm. 5.3.1]). For a function $f : E \subset \mathbb{R}^n \to \mathbb{R}^m$ the following are equivalent:

- 1) f is continuous on E
- 2) For any $x \in E$ and $\epsilon > 0$ there exists some $\delta > 0$ such that $||f(y) f(x)|| < \epsilon$ for all $y \in E$ with $||x y|| < \delta$.
- 3) For every convergent sequence $\{x_n\} \subset E$ with $\lim_{n \to \infty} x_n = x \in E$, $\lim_{n \to \infty} f(x_n) = f(x)$.
- 4) For every open set $G \subset \mathbb{R}^m$ the set $f^{-1}(G)$ is open in E (with the subspace topology).

Theorem 3.2 (Extreme Value Theorem / c.f. [Rud76, Thms. 4.14,15]). If $f : K \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous and K is compact, then f(K) is compact. In particular, given any continuous function $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ there exist points $p, q \in [a,b]$ so that $f(p) = \sup_{[a,b]} f(x)$ and $f(q) = \inf_{[a,b]} f(x)$.

Theorem 3.3 (c.f. [Rud76, Thm. 4.19]). If $f : K \subset \mathbb{R}^n \to \mathbb{R}^m$ is continuous and K is compact, then f is uniformly continuous on K.

Theorem 3.4 (Intermediate Value Theorem / c.f. [Rud76, Thm. 4.23]). If $f : [a,b] \subset \mathbb{R} \to \mathbb{R}$ is continuous and f(a) < f(b), then for any real number x such that f(a) < x < f(b) there exists some $c \in (a,b)$ such that f(c) = x.

Theorem 3.5 (c.f. [Rud76, Thms. 4.29,30]). If $f : (a, b) \to \mathbb{R}$ is monotonic then f is discontinuous on a set $E \subset (a, b)$ which is at most countable. Further, each point where f is discontinuous is a jump discontinuity in that the limits $f(x_i)$ and $f(x_i)$ both exist for each $x_i \in E$.

In showing continuity directly from the ϵ - δ definition it is often helpful to recall the factorizations

$$x^{2} - y^{2} = (x - y)(x + y)$$

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}).$$

Often, these will need to be manipulated to fit the problem at hand.

Warm-up problems.

- 1) State the definition of uniform continuity. Give an example of a function $f: (0,1) \to \mathbb{R}$ which is continuous but not uniformly continuous.
- 2) (c.f. June 2012 #1b) If $f : [0,1] \to [0,1]$ is continuous, show that f(x) = x for some $x \in [0,1]$.
- 3) Give an ϵ - δ proof that $f(x) = x^{1/3}$ is continuous on [0, 1]. (You may also wish to try this for $f(x) = \sqrt{x}$ and/or on the interval $[0, \infty)$ as in June 2011 and others.)
- 4) (June 2013 #1b) Prove that $\lim_{x \to -\infty} \frac{x-1}{x} = 1$.
- 5) A useful lemma: Let $\{x_n\}$ be a real sequence with $\liminf_{n\to\infty} x_n$, $\limsup_{n\to\infty} x_n \in \mathbb{R}$. Show that for any $\epsilon > 0$ there exists some $N \in \mathbb{N}$ so that

$$\left(\liminf_{n \to \infty} x_n\right) - \epsilon < x_n < \left(\limsup_{n \to \infty} x_n\right) + \epsilon \quad \text{ for all } n \ge N.$$

What does this result imply if $\limsup_{n \to \infty} x_n < L$?

Problems.

6) (January 2009 #2a, obfuscated) Is $f(x) = \ln x$ uniformly continuous on (0, 1]? Prove your answer.

(You may also wish to try the same question with $f(x) = \sin(1/x)$ on $(0, \pi]$.)

- 7) (c.f. January 2007 #3a, June 2010 #2a) Prove Theorem 3.2 for a function $f: K \subset \mathbb{R} \to \mathbb{R}$. (The proof is nearly unchanged when n or m is greater than 1.)
- 8) (June 2009 #1) Give an ϵ - δ proof that $f(x) = \frac{x^2}{1-x^2}$ is continuous on (0,1). Is f uniformly continuous on (0,1)? Prove your answer.
- 9) Suppose that $f : [a, b] \to \mathbb{R}$ is continuous and define $M : [a, b] \to \mathbb{R}$ by $M(x) = \sup\{f(y) : a \le y \le x\}.$

Show that M is continuous on [a, b].

- 10) ([KRD10, 5.6.H]) Show that a continuous function $f : \mathbb{R} \to \mathbb{R}$ cannot take on every real value exactly twice.
- 11) (June 2013 #5b) Let (X, d) be a complete metric space, $A \subset X$ be a bounded set, and $F: X \to X$. Assume there exists some k > 0 such that $d(F(a), F(b)) \leq kd(a, b)$ for all $a, b \in X$ and that $A \subset F(A)$. Provide a description of A if k < 1. Can anything be said about A if $k \geq 1$?

More problems.

- 12) (January 2012 #1b) Let $y \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be given. Suppose that for every sequence $\{x_n\}$ we have $\liminf_{n\to\infty} |f(x_n) f(y)| \le \liminf_{n\to\infty} |x_n y|$. Prove that f is continuous at y.
- 13) Prove Theorem 3.3.
- 14) Prove Theorem 3.4.

References

[KRD10] Allan P. Donsig Kenneth R. Davidson. Real analysis and applications. Springer, 2010.

[Rud76] Walter Rudin. Principles of mathematical analysis. McGraw-Hill, Inc., USA, third edition, 1976.