Day 6: Integral calculus

Relevant information. For a bounded function $f : [a, b] \to \mathbb{R}$ and a monotonically increasing function $\alpha : [a, b] \to \mathbb{R}$ we say that f is Riemann(-Steiltjes) integrable with respect to α and write $f \in \mathscr{R}(\alpha)$ on [a, b] provided

$$\inf_{P\in\mathscr{P}[a,b]}U(P,f,\alpha)=\sup_{P\in\mathscr{P}[a,b]}L(P,f,\alpha).$$

The value of the integral is then this common quantity,

$$\int_{a}^{b} f d\alpha = \inf_{P \in \mathscr{P}[a,b]} U(P,f,\alpha) = \sup_{P \in \mathscr{P}[a,b]} L(P,f,\alpha).$$

Throughout, $\mathscr{P}[a, b]$ is the collection of all partitions of [a, b].

Theorem 5.1 (Riemann's condition / [Rud76, Thm. 6.6], [Apo74, Thm. 7.19]). $f \in \mathscr{R}(\alpha)$ on [a, b] if and only if for every $\epsilon > 0$ there exists a partition $P \in \mathscr{P}[a, b]$ such that

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon.$$

Frequently, we assume only that α is of bounded variation or even merely bounded. The following integration by parts formula is occasionally useful:

Theorem 5.2 ([Apo74, Thm. 7.6]). If $f \in \mathscr{R}(\alpha)$ on [a, b] then $\alpha \in \mathscr{R}(f)$ on [a, b] and

$$\int_{a}^{b} f d\alpha = f(b)\alpha(b) - f(a)\alpha(a) - \int_{a}^{b} \alpha df.$$

Remark. Some differences in the definition of $\mathscr{R}(\alpha)$ do exist between authors. Not all of these definitions are equivalent! This is unlikely to cause any issues when Riemann's condition is satisfied.

The ordinary Riemann integral is the case where $\alpha(x) = x$. In this instance, we write merely $f \in \mathscr{R}$ on [a, b].

Theorem 5.3 ([Rud76, Thm. 6.17]). Assume α increases monotonically and $\alpha' \in \mathscr{R}$ on [a, b] with $f : [a, b] \to \mathbb{R}$ bounded. Then, $f \in \mathscr{R}(\alpha)$ if and only if $f\alpha' \in \mathscr{R}$ and, in that case,

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) \, dx.$$

Theorem 5.4 (First fundamental theorem of calculus / [Rud76, Thm. 6.20]). If $f \in \mathscr{R}$ on [a, b] and

$$F(x) = \int_{a}^{x} f(t)dt$$

then F is continuous on [a,b] and differentiable at any $x_0 \in [a,b]$ where f is continuous with $F'(x_0) = f(x_0)$.

Theorem 5.5 (Mean value theorem). If $f : [a, b] \to \mathbb{R}$ is continuous then there exists some $c \in (a, b)$ such that

$$\frac{1}{b-a}\int_{a}^{b}f(x)dx = f(c).$$

Warm-up problems.

- 1) ([KRD10, 6.4.N]) If f and g are bounded on [a, b] and both are Riemann integrable on [a, b], show that $fg \in \mathscr{R}$ on [a, b].
- 2) ([Apo74, 7.12] c.f. [Rud76, p. 138 #3]) Give an example of a bounded function f and an increasing function α defined on [a, b] such that $|f| \in \mathscr{R}(\alpha)$ but $f \notin \mathscr{R}(\alpha)$.
- 3) (January 2007 #1) Let $f(x) = \int_1^x \frac{1}{t} dt$ for x > 0. (a) Use an $\epsilon \delta$ proof to show that f is continuous on $(0, \infty)$. (b) Use an $\epsilon \delta$ proof to show that f is differentiable on $(0, \infty)$.
- 4) ([Apo74, 7.2]) If $f \in \mathscr{R}(\alpha)$ on [a, b] and $\int_a^b f d\alpha = 0$ for every f which is monotonic on [a, b], prove that α must be constant on [a, b].

Problems.

- 5) (January 2006 #4b) Suppose that f is continuous and $f(x) \ge 0$ on [0,1]. If f(0) > 0, prove that $\int_0^1 f(x) dx > 0$.
- 6) (June 2005 #1b) Use the definition of the Riemann integral to prove that if f is bounded on [a, b] and is continuous everywhere except for finitely many points in (a, b), then $f \in \mathscr{R}$ on [a, b].
- 7) (January 2010 #5) Suppose that $f : [a,b] \to \mathbb{R}$ is continuous, $f \ge 0$ on [a,b], and put $M = \sup\{f(x) : x \in [a,b]\}$. Prove that

$$\lim_{p \to \infty} \left(\int_a^b f(x)^p \, dx \right)^{1/p} = M.$$

- 8) (January 2009 #4b) Let f be a continuous real-valued function on [0, 1]. Prove that there exists at least one point $\xi \in [0, 1]$ such that $\int_0^1 x^4 f(x) dx = \frac{1}{5} f(\xi)$.
- 9) (June 2009 #5b) Let ϕ be a real-valued function defined on [0, 1] such that ϕ , ϕ' , and ϕ'' are continuous on [0, 1]. Prove that

$$\int_0^1 \cos x \frac{x\phi'(x) - \phi(x) + \phi(0)}{x^2} \, dx < \frac{3}{2} ||\phi''||_{\infty},$$

where $||\phi''||_{\infty} = \sup_{[0,1]} |\phi''(x)|$. Note that 3/2 may not be the smallest possible constant.

10) (Essentialy June 2013 #7) Prove Theorem 5.3.

References

- [KRD10] Allan P. Donsig Kenneth R. Davidson. Real analysis and applications. Springer, 2010.
- [Rud76] Walter Rudin. Principles of mathematical analysis. McGraw-Hill, Inc., USA, third edition, 1976.

[[]Apo74] Tom M. Apostol. Mathematical Analysis. Addison-Wesley, second edition, 1974.