Relevant information.

Definition. For a sequence of functions $\{f_n\}$ where $f_n, f: E \to \mathbb{R}$ for all n,

- i) $f_n \to f$ pointwise if $\lim_{n\to\infty} f_n(x) = f(x)$ for each $x \in E$,
- ii) $f_n \to f$ uniformly if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that $|f_n(x) f(x)| < \epsilon$ for all $n \ge N$ and all $x \in E$. That is, $f_n \to f$ uniformly provided $||f_n f||_{\infty} \to 0$.
- iii) $\sum_{n=1}^{\infty} f_n(x) \to f(x)$ provided the partial sums $\sum_{n=1}^{N} f_n(x)$ converge pointwise to f as $N \to \infty$.
- iv) $\sum_{n=1}^{\infty} f_n(x) \to f(x)$ provided the partial sums $\sum_{n=1}^{N} f_n(x)$ converge uniformly to f as $N \to \infty$.

Theorem 6.1 ([Rud76, Thm. 7.12]). If $\{f_n\}$ is a sequence of continuous functions on E and $f_n \to f$ uniformly on E, then f is continuous on E.

Theorem 6.2 (Weierstrass *M*-test / [Rud76, Thm. 7.10]). Suppose $\{f_n\}$ is a sequence of functions on *E* and that there exists a real sequence $\{M_n\}$ such that $|f_n(x)| \leq M_n$ for all $x \in E$. If $\sum_{n=1}^{\infty} M_n$ converges, then $\sum_{n=1}^{\infty} f_n$ converges uniformly on *E*.

Theorem 6.3 ([Rud76, Thm. 7.16]). If α is monotonically increasing on [a, b], $f_n \in \mathscr{R}(\alpha)$ for all n, and $f_n \to f$ uniformly on [a, b], then $f \in \mathscr{R}(\alpha)$, $\lim_{n\to\infty} \int_a^b f_n \, d\alpha$ exists, and

$$\lim_{n \to \infty} \int_a^b f_n \, d\alpha = \int_a^b f \, d\alpha.$$

Theorem 6.4 ([Rud76, Thm. 7.17]). Let $\{f_n\}$ be a sequence of functions differentiable on [a, b] for which $\{f_n(x_0)\}$ converges at some $x_0 \in [a, b]$. If $\{f'_n\}$ converges uniformly on [a, b] then $\{f_n\}$ converges uniformly on [a, b] to a function f such that

$$\lim_{n \to \infty} f'_n(x) = f'(x).$$

Theorem 6.5 (Arzelà-Ascoli / [KRD10, Thm. 8.6.9]). Let $K \subset \mathbb{R}^n$ be compact. A collection of functions $\mathscr{F} \subset C(K, \mathbb{R}^m)$ is compact if and only if \mathscr{F} is closed, bounded, and (pointwise) equicontinuous.

Remark 6.6. Compare this to [Rud76, Thm. 7.25]. There are two common definitions of "equicontinuous." Rudin's definition in 7.22 is sometimes called uniformly equicontinuous as δ does not depend on x or y.

Theorem 6.7 (Stone-Weierstrass / [Rud76, Thms. 7.26, 7.32]). If f is a continuous function on [a, b] then there exists a sequence of polynomials $\{P_n\}$ which converge uniformly to f. More generally: If \mathscr{A} is a self-adjoint algebra of continuous functions on a compact set K which

separates points of K and vanishes at no point of K, then given any $f \in C(K)$ there exists a sequence $f_n \subset \mathscr{A}$ such that $f_n \to f$ uniformly on K.

Warm-up problems.

1) Give a precise statement of the Stone-Weierstrass theorem for real-valued continuous functions. Then, verify that the set of all polynomials of the form

$$\left\{\sum_{j=2017}^{N} a_j x^j : N \in \mathbb{N}, \ N \ge 2017, \ a_j \in \mathbb{R}\right\}$$

along with the zero function is an algebra over $[-2, 2] \subset \mathbb{R}$.

- 2) To clarify Remark 6.6: A family of functions $\mathscr{F} \subset C(K, \mathbb{R}^m)$ mapping a set $K \subset \mathbb{R}^n$ into \mathbb{R}^m is pointwise equicontinuous on K provided for every $x \in K$ and $\epsilon > 0$ there exists some $\delta > 0$ (which may depend on x) such that $||f(x) f(y)|| < \epsilon$ for all $f \in \mathscr{F}$ and $y \in K$ with $||x y|| < \delta$. The family \mathscr{F} is uniformly equicontinuous if for every $\epsilon > 0$ there exists some $\delta > 0$ such that $||f(x) f(y)|| < \epsilon$ for all $f \in \mathscr{F}$ and $x, y \in K$ with $||x y|| < \delta$. Prove that these definitions are equivalent when K is compact.
- 3) Assume that $\{f_n\}$ is a sequence of continuous functions $f_n : E \subset \mathbb{R} \to \mathbb{R}$ which converges uniformly to f. Prove the results of Theorem 6.1 directly.
- 4) Find the pointwise limit f of the sequence of functions $\{f_n\}$ given by $f_n(x) = x^n$ on [0, 1]. Is the convergence of f_n to f uniform? ([KRD10, 8.6.A]) Why is $B = \{f \in C([0, 1]) : ||f||_{\infty} \leq 1\}$ not compact?
- 5) Show that if $\{f_n\}$ is an equicontinuous sequence of functions on a compact set K and $f_n \to f$ pointwise on K, then $f_n \to f$ uniformly on K.

Problems.

- 6) (June 2010 #6a) Let $f : [0,1] \to \mathbb{R}$ be continuous with $f(0) \neq f(1)$ and define $f_n(x) = f(x^n)$. Prove that f_n does not converge uniformly on [0,1].
- 7) (January 2008 5a) Let $f_n(x) = \frac{x}{1+nx^2}$ for $n \in \mathbb{N}$. Let $\mathcal{F} := \{f_n : n = 1, 2, 3, \ldots\}$ and [a, b] be any compact subset of \mathbb{R} . Is \mathcal{F} equicontinuous? Justify your answer.
- 8) (January 2005 #4, June 2010 #6b) If $f:[0,1] \to \mathbb{R}$ is continuous, prove that

$$\lim_{n \to \infty} \int_0^1 f(x^n) \, dx = f(0).$$

- 9) (January 2020 4a) Let $M < \infty$ and $\mathcal{F} \subseteq C[a, b]$. Assume that each $f \in \mathcal{F}$ is differentiable on (a, b) and satisfies $|f(a)| \leq M$ and $|f'(x)| \leq M$ for all $x \in (a, b)$. Prove that \mathcal{F} is equicontinuous on [a, b].
- 10) (June 2005 #5) Suppose that $f \in C([0, 1])$ and that $\int_0^1 f(x)x^n dx = 0$ for all $n = 99, 100, 101, \dots$ Show that $f \equiv 0$. Note: Many variations on this problem exist. See June 2012 #6b and others.
- 11) (January 2005 #3b) Suppose $f_n : [0, 1] \to \mathbb{R}$ are continuous functions converging uniformly to $f : [0, 1] \to \mathbb{R}$. Either prove that $\lim_{n \to \infty} \int_{1/n}^{1} f_n(x) \, dx = \int_0^1 f(x) \, dx$ or give a counterexample.

More problems.

- 12) (January 2006 #7a) Let f be continuous on [0, 1] and f(0) = f(1) = 0. Show that there is a sequence of polynomials $\{P_n\}$ such that $x(1-x)P_n(x)$ converges to f uniformly.
- 13) (June 2007 #4b part i) Evaluate $\lim_{n \to \infty} \int_{\pi/2}^{\pi} \frac{n \sin(x/n)}{x} dx$ and justify your reasoning.

- 14) (June 2009 #4a) Let $\{f_n\}$ be a sequence of real-valued continuous functions such that $f_n \to f$ uniformly on [0, 1], and let $\{x_n\} \subset [0, 1]$ be a sequence which converges to x. Show that $\lim_{n \to \infty} f_n(x_n) = f(x)$.
- 15) (June 2009 #4b) Prove that the series

$$x^{2} + \frac{x^{2}}{1+x^{2}} + \frac{x^{2}}{(1+x^{2})^{2}} + \frac{x^{2}}{(1+x^{2})^{3}} + \cdots$$

converges uniformly on $[a, \infty)$ for every a > 0; but not uniformly on [0, b] for any b > 0.

References

[KRD10] Allan P. Donsig Kenneth R. Davidson. Real analysis and applications. Springer, 2010.[Rud76] Walter Rudin. Principles of mathematical analysis. McGraw-Hill, Inc., USA, third edition, 1976.