
Problem 1A. Calculus Score:

Find the length of the spiral given in polar coordinates by r = eθ, −∞ < θ ≤ 0.

Solution: The length is
∫ 0

θ=−∞ ds where by Pythagoras ds =
√
dr2 + (rdθ)2 = dθ ×

√
2eθ,

so the length is
∫ 0

−∞

√
2eθdθ =

√
2.

Problem 2A. Real analysis Score:

Prove or disprove the following assertion:

If f : R→ R has the property that f([a, b]) is a bounded closed interval for every
a ≤ b, then f is continuous.

Solution: Counterexample:

f(x) =

{
sin(1/x) x 6= 0,

0 x = 0.

Since limx→0 f(x) does not exist, f is discontinuous at 0 (this is the classic example of a
discontinuity which is not a jump). To verify that it is a counterexample we must show that
every f([a, b]) is a closed interval. Now, the converse of the assertion in the problem is true,
since the continuous image of a compact, connected space is compact and connected, and
the compact, connected subsets of R are just the closed intervals. Since f is continuous on
R \ {0}, this implies that f([a, b]) is a closed interval whenever 0 6∈ [a, b]. In the remaining
cases, if 0 ∈ [a, b] and a < b, then f([a, b]) = [−1, 1], while f([0, 0]) = [0, 0].

Problem 3A. Real analysis Score:

Prove the existence of the limit

lim
n→∞

1

1
+

1

2
+

1

3
+ · · ·+ 1

n
− log n.

Solution: We can write this as 1/n +
∫ n
1

(1/[x] − 1/x)dx. The integral is an integral of a
positive function, so tends to a limit or +∞ as n tends to∞. On the other hand we can also



write it as 1 +
∫ n
1

(1/[x+ 1]− 1/x)dx which is at most 1. So the integral in the first sentence
above is bounded, and therefore tends to a (finite) limit. So the limit in the question exists.

Problem 4A. Complex analysis Score:

(a) Find the poles and residues of 1/(z3 cos(z)).
(b) Show that the integral of the function above over a square contour centered at the

origin with side 2πN tends to zero as the integer N tends to infinity.
(c) Find the sum 1/13 − 1/33 + 1/53 − 1/73 + · · · .

Solution: (a) There is a simple pole at (n+ 1/2)π of residue (−1)n+1((n+ 1/2)π)−3 and a
pole of order 3 at 0 with residue 1/2.

(b) 1/ cos(z) is bounded on the boundary of this square, and 1/z3 is bounded by a
constant times 1/N3, and the length of the boundary is bounded by a constant times N , so
the integral is bounded by a constant times 1/N2 which tends to 0.

(c) By part b and Cauchy’s residue theorem the sum of all residues is 0. By part a this
means that 1/2 +

∑
n(−1)n+1((n+ 1/2)π)−3 = 0, giving the sum in the question as π3/32.

Problem 5A. Complex analysis Score:

(a) Show that if |z| < 1 then there is a holomorphic function defined on some neigh-
borhood of the unit disk whose only zero is at z and that has absolute value 1 on the unit
circle.

(b) Suppose that f is a holomorphic function on the complex plane and is not identically
zero. Show that there is a holomorphic function g defined in some open set containing the
unit disk such that |f(z)| = |g(z)| whenever |z| = 1, and such that g has no zeros in the
open unit disk.

Solution: (a)(z − t)/(1− zt)
(b) Divide f by the product of the functions in part (a) for each zero of f in the unit

circle.

Problem 6A. Linear algebra Score:

If U , V , W are subspaces of a vector space such that any two have intersection zero,



prove that

dim(U + V +W ) + dimU + dimV + dimW ≤ dim(U + V ) + dim(V +W ) + dim(W + U)

and give an example where equality does not hold.

Solution:
Since any two of the subspaces have intersection 0, we have dim(U + V ) = dim(U) +

dim(V ). So the inequality is equivalent to dim(U + V +W ) ≤ dim(U) + dim(V ) + dim(W ),
which is obvious. For an example where equality does not hold, take U , V , W to be 3
distinct 1-dimensional subspaces of a 2-dimensional space.

Problem 7A. Linear algebra Score:

Let In denote the n× n identity matrix, and Jn the n× n matrix with all entries equal to 1.
Determine for which real numbers a the matrix In + aJn is invertible, and find its inverse.

Solution: Clearly rank(Jn) = 1, and the vector (1, 1, . . . , 1)T is an eigenvector with eigen-
value n. Therefore the eigenvalues of J are n, with multiplicity 1, and 0, with multiplicity
n − 1. It follows that In + aJn is invertible iff a 6= −1/n. To find the inverse, observe that
J2
n = nJn, hence (In + bJn)(In + aJn) = In + (a+ b+ nab)Jn. Solving a+ b+ nab = 0 for b,

we see that (In + aJn)−1 = (In + bJn), where b = −a/(1 + na).

Problem 8A. Abstract algebra Score:

Let G be a finite Abelian group of order n. Suppose m is a square-free (not divisible by the
square of a prime), positive integer dividing n. Show that G contains an element of order m.
Give an example to show that this need not be true if m is not assumed to be square-free.

Solution: Write m = p1p2 · · · pk, where the pi are distinct primes. By Cauchy’s theorem G
contains an element ai of order pi. Claim: g =: a1a2 · · · ak has order m. First

gd = ad1a
d
2 · · · adk.

So gm = e since ami = (apii )m/pi = e. Now suppose m 6 |d. Then there exists an i such that
pi 6 |d. Then pi 6 |dm/pi, but pj|dm/pi if j 6= i, so

(gd)m/pi = a
dm/pi
i 6= e.



Thus g has order m.
The product of 2 groups of order 2 has order divisible by 4 but contains no element of

order 4.

Problem 9A. Abstract algebra Score:

Does there exists a homomorphism of commutative rings with unit from Z[x]/(x2 + 3) to
Z[x]/(x2 − x+ 1)? Either exhibit such a homomorphism, or prove that none exists.

Solution: The question amounts to whether −3 has a square root in the ring S = Z[x]/(x2−
x+1). The elements of S may be written ax+ b, a, b ∈ Z, and the square of such an element
is then given by

(ax+ b)2 = a2(x− 1) + 2abx+ b2 = (a2 + 2ab)x+ (b2 − a2).

So we need a solution in integers of the equations a2 + 2ab = 0, b2− a2 = −3. The solutions
are (b = 1, a = −2) and (b = −1, a = 2). Hence there are two ring homomorphisms

Z[x]/(x2 + 3)→ Z[x]/(x2 − x+ 1)

x 7→ ±(2x− 1).

(Although not necessary to the solution of the problem, what is happening here is that the
ring Z[

√
−3] ∼= Z[x]/(x2 + 3) is not integrally closed. Instead, the full ring of algebraic

integers in the field Q(
√
−3) is the larger ring Z[(1±

√
−3)/2] ∼= Z[x]/(x2 − x+ 1).)

Problem 1B. Calculus Score:

Prove that
π

4
= 4 arctan

1

5
− arctan

1

239
.

In 1706 John Machin used this formula to calculate π to 100 decimal places. Explain briefly
why he did not use the simpler formula π

4
= arctan 1.

Solution: Use tan(x + y) = (tan(x) + tan(y))/(1 − tan(x) tan(y)) three times. If x =
arctan(1/5) then tan(x) = 1/5, so tan(2x) = 5/12 and tan(4x) = 120/119. Putting y =
arctan(1/239) gives tan(4x− y) = (120/119− 1/239)/(1 + 120/(119× 239)) = (120× 239−
119)/(119× 239 + 120) = 1 so 4x− y = π/4 (as an easy estimate shows it is between 0 and
π/2).

The series π/4 = arctan 1 = 1− 1/3 + 1/5− · · · converges too slowly to use directly for
calculating π: it needs about 10n terms for n decimal places.



Problem 2B. Real analysis Score:

(a) Find the sum 1− 1/2 + 1/3− 1/4 + · · ·
(b) Find the sum 1− 1/2− 1/4 + 1/3− 1/6− 1/8 + 1/5− 1/10− 1/12 + · · · .

Solution: (a) log 2
(b) Pairing the 1st and 2nd, 4th and 5th terms and so on, this series is equal to 1/2 −

1/4 + 1/6 − 1/8 + · · · whose terms are half thsoe of the preceding series, so the sum is
(log 2)/2. The point is that even though it has the same terms as the first series the sum is
different.

Problem 3B. Real analysis Score:

Let (X, dX) and (Y, dY ) be metric spaces. Suppose that a map π : X → Y is a submetry;
this means that for every x ∈ X and any r > 0, the image of the closed r-ball around x is
the closed r-ball around π(x).

(a) Show that π is surjective if X is nonempty.
(b) Show that π is continuous.
(c) Show that π is open (meaning that the image of any open subset is open).

Solution: (a) Choose x0 ∈ X. Given y ∈ Y , put r = dY (π(x0), y). Then y ∈ D(π(x0), r) =
π(D(x0, r)), so there is some x ∈ D(x0, r) with π(x) = y.
(b) Given x ∈ X and ε > 0, π(B(x, ε/2)) ⊂ π(D(x, ε/2)) = D(π(x), ε/2) ⊂ B(π(x), ε).
(c) It suffices to show that the image of any open ball is open in Y .

π(B(x, r)) = π

(⋃
r′<r

D(x, r)

)
=
⋃
r′<r

π(D(x), r)) =
⋃
r′<r

D(π(x), r)) = B(π(x), r).

Problem 4B. Complex analysis Score:

Compute ∫ ∞
0

dx

(x2 + 1)2
.



Solution: We want to compute
1

2

∫ ∞
−∞

dx

(x2 + 1)2
.

Put

f(z) =
1

(z2 + 1)2
.

Because |f(z)| = O(|z|−4), we can apply the Cauchy residue theorem to a semicircle in the
upper half plane and just compute residues. The only singularity in the upper half plane is
at z = i. The residue there is −2(2i)−3. The answer is

1

2
· 2πi · −2(2i)−3 =

π

4
.

Problem 5B. Complex analysis Score:

Show that as the positive integer N tends to infinity, the change in argument of ez − z is
bounded on 3 sides of the square with corners ±2πN±2πiN but is unbounded on the fourth
side. Show that ez = z has infinitely many complex roots.

Solution: On the left side of the square the argument is dominated by z as ez is very small
and the function has negative real part, so the change in argument is bounded. On the top
and bottom of the square the function has positive or negative imaginary part, so the change
in argument is bounded. On the right of the square the function is dominated by ez for N
large and z makes little change to the argument, so the change is about that of ez which is
roughly proportional to N and therefore tends to infinity.

The number of roots of ez = z in a large square is proportional to the change in argument
on the boundary of the square, which tends to infinity so there are infinitely many roots.

Problem 6B. Linear algebra Score:

Find all eigenvalues and eigenvectors of the linear map T : Cn → Cn given by T ((x1, . . . , xn)) =
(x2, x3, . . . , xn, x1).

Solution: Since T n = I, every eigenvalue is an n-th root of unity ω = e2πik/n. Every n-th
root of unity is an eigenvalue, because (1, ω, ω2, . . . , ωn−1) is an eigenvector with eigenvalue
ω.



Problem 7B. Linear algebra Score:

Suppose that A and B are linear transformations of a finite dimensional complex

vector space such that AB − BA = A. If v is an eigenvector of B with eigenvalue λ, show
that Av is zero or an eigenvector of B and find its eigenvalue. Prove that A is nilpotent.

Solution: If Bv = λv then BAv = (AB − A)v = (λ − 1)Av so Av is a (possibly zero)
eigenvector with eigenvalue λ − 1. Since λ, λ − 1, λ − 2, ... cannot all be eigenvalues of
nonzero eigenvectors, Anv must be zero for large n.

Suppose V is the vector space, and if it is nonzero pick a non-zero eigenvector v of B.
By induction on the dimension of V , A is nilpotent on V/Cv, and is nilpotent on v, so is
nilpotent on V .

Problem 8B. Abstract algebra Score:

Let R be a commutative ring with unit. Suppose that there is a monic polynomial p(x) ∈ R[x]
such that the ideal (p(x)) ⊆ R[x] is maximal. Prove that R is a field.

Solution: Let p(x) be monic of degree d. Then R[x]/(p(x)) is a free R module with
basis {1, x, . . . , xd−1}, that is, each of its elements can be written uniquely in the form
f = a0 + a1x + · · · ad−1xd−1, where ai ∈ R, with multiplication in R[x]/(p(x)) given by
multiplication of polynomials followed by reduction mod (p(x)). In particular, if r ∈ R, then
ra0 + ra1x+ · · ·+ rad−1x

d−1 is the unique canonical expression for rf .
The hypothesis that (p(x)) is maximal is equivalent to R[x]/(p(x)) being a field. So for

every nonzero r ∈ R, there is an element f as above such that rf = 1. By the uniqueness of
the expression for rf , this implies ra0 = 1. Thus r has an inverse in R, so R is a field.

Problem 9B. Abstract algebra Score:

Let M be a (possibly singular) square matrix over a field F . Let p be the product of the non-
zero eigenvalues (counted with multiplicities) of M in some algebraically closed extension K
of F . Prove that p ∈ F .

Solution: The characteristic polyomial f(x) = det(M −xI) factors as xm
∏

i(x−λi), where
m is the nullity of M and the λi are the non-zero eigenvalues. The product of the non-zero
eigenvalues is therefore ± the coefficient of xm in f(x), hence an element of F .


