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Problem 1A. Score:

The set of pairs of positive real numbers (x, y) with xy = yx is a union of two smooth curves.
Find the point where they intersect.

Solution:
The set is the set of points with x1/x = y1/y. The graph of the function f(x) = x1/x

rises from (0, 0) to a maximum at (e, e1/e) and then decreases to (∞, 1). So the points with
xy = yx consists of the line y = x together with the pairs of distinct points having the same
value of f(x), and these curves meet whenever f has a maximum or minumum value, so the
intersection point is (e, e).
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Problem 2A. Score:

Suppose that x is a smooth real-valued function of the real number t, satisfying dx/dt ≤
b(t)x(t) for some continuous function b. Prove that if s ≤ t then x(t) ≤ x(s) exp

∫ t
s
b(t)dt.

Solution: Put y(t) = x(t) exp(−
∫ t
s
b(t)dt). Then the condition dx/dt ≤ b(t)x(t) implies

that dy/dt ≤ 0, so y(t) ≤ y(s), which is equivalent to the result.
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Problem 3A. Score:

Define a set of positive real numbers as follows. Let x0 > 0 be any positive number, and let
xn+1 = (1 + xn)−1 for all n ≥ 0. Prove that this sequence converges, and find its limit.

Solution:
First of all, since x0 > 0, 1 + x0 > 1 and therefore 0 < x1 < 1. Similarly, 1 < 1 + x1 < 2,

so 1
2
< x2 < 1. Finally, 3

2
< 1 + x2 < 2, so 1

2
< x3 <

2
3
. By induction, we then have

1
2
< xn <

2
3

for all n ≥ 3.
Let f(x) = 1/(1 + x). Solving for f(x) = x leads to an equation x2 + x − 1 = 0, so

α := (
√

5− 1)/2 is the unique positive real number for which f(α) = α.
We have f ′(x) = −1/(1 + x)2, so

|f ′(x)| < 4

9
for all

1

2
< x <

2

3
.

Since α lies in the given range (apply the first paragraph with x0 = α), we have by the
Mean Value Theorem that

|xn+1 − α| = |f(xn)− f(α)| < 4

9
|xn − α|

for all n ≥ 3, so the sequence {xn} converges to α =
√
5−1
2

as n→∞.
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Problem 4A. Score:

Show that the polynomial p(z) = z5 − 6z + 3 has five distinct complex roots, and that
exactly three (and not five) are real.

Solution:
We know that p has five roots, when counted with multiplicity, so it suffices for the first

part to show that p has no multiple roots. Any multiple root of p must be a common root
of p and p′, hence it must be a root of

5p(z)− zp′(z) = (5z5 − 30z + 15)− (5z5 − 6z) = −24z + 15 .

Thus, the only possible multiple root of p is z = 5/8. But this is clearly seen not to be a
root of p′, since 5(5/8)4 − 6 6= 0. Thus p has five distinct complex roots.

To count the real roots, we note that p(−2) = −17 < 0, p(0) = 3 > 0, p(1) = −2 < 0,
and p(2) = 23 > 0. So, by continuity, p has at least three real roots. However, p′(x) = 5x4−6
is negative when |x| < 4

√
6/5 and positive when |x| > 4

√
6/5, so it has at most one root on

each of the three intervals

(−∞,− 4
√

6/5), (− 4
√

6/5, 4
√

6/5), ( 4
√

6/5,∞) .

Therefore p has exactly three real roots.
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Problem 5A. Score:

Compute ∫ 2π

0

cos(x)

2 + cos(x)
dx.

Solution:
Put z = eix. Then∫ 2π

0

cos(x)

2 + cos(x)
dx =

∫
|z|=1

z+z−1

2

2 + z+z−1

2

dz

iz
=

∫
|z|=1

z2 + 1

z(z2 + 4z + 1)

dz

i
.

The poles inside the unit circle are at z = 0 and z =
√

3− 2. The answer is

2π

(
Resz=0

z2 + 1

z(z2 + 4z + 1)
+Resz=

√
3−2

z2 + 1

z(z2 + 4z + 1)

)
=

2π

(
1 +

4− 2
√

3

3− 2
√

3

)
= 2π · 7− 4

√
3

3− 2
√

3
.
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Problem 6A. Score:

Let V be the complex vector space of complex 2×2 matrices X. Find all quadratic forms
Q on V such that Q(X) = Q(AXA−1) for any complex invertible 2× 2 matrix A.

Solution:
Take Q(X) = xTr(X2) + yTr(X)2. It clearly satisfies the requirements. These are the

only possibilities, as the condition of invariance implies that Q is determined by its values on
diagonal matrices (as diagonalizable matrices are dense in all matrices). Also Q is invariant
under exchanging the two diagonal entries of a diagonal matrix, from which it follows easily
that the space of invariant forms is at most 2-dimensional. (A similar argument works for n
by n matrices, except that if n < 2 the space of quadratic forms has dimension less than 2
due to degeneracies.)



STUDENT EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 7A. Score:

Let A and B be n×n complex matrices. Prove or disprove each of the following statements:
1. If A and B are diagonalizable, so is A+B.
2. If A and B are diagonalizable, so is AB.
3. If A2 = A, then A is diagonalizable.
4. If A2 is diagonalizable, then A is diagonalizable.

Solution:
1, 2, 4 are false, with many 2 by 2 counterexamples using the fact that any matrix of the

form
(
ab
0a

)
with b non-zero is not diagonalizable. 3 is true, as the minimal polynomial of A

has no repeated roots.
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Problem 8A. Score:

Let R be a (possibly non-commutative) ring with identity, and let u be an element of R
with a right inverse. Prove that the following conditions on u are equivalent:

1. u has more than one right inverse;

2. u is a zero divisor;

3. u is not a unit.

Solution:
Let v be a right inverse of u: uv = 1.
(1) =⇒ (2): If v′ is another right inverse of u, then u(v− v′) = 1− 1 = 0 with v− v′ 6= 0,

so u is a zero divisor.
(2) =⇒ (3): We prove the contrapositive. If u is a unit and if uw = 0, then 0 = u−1 · 0 =

u−1uw = w, so w = 0. Similarly, wu = 0 implies w = 0. Thus u is not a zero divisor.
(3) =⇒ (1): Since u is not a unit, vu 6= 1. Let v′ = v + (vu− 1). Then v′ 6= v, and

uv′ = u(v + vu− 1) = uv + uvu− u = 1 + 1u− u = 1 .

Thus v′ is another right inverse of u.
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Problem 9A. Score:

Give an example of a group G such that the center of G modulo its center is non-trivial.
Give an example of a group H such that the groups H, H ′, H ′′ and H ′′′ are all distinct. (The
derived group H ′ of a group H is the subgroup generated by commutators, or equivalently
the smallest subgroup such that the quotient by this subgroup is an abelian group.)

Solution:
The group G can be the dihedral group of order 8. The group H can be the symmetric

group S4 on 4 points, with derived groups the alternating group A4, the Klein 4-group, and
the trivial group.
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Problem 1B. Score:

For which pairs of real numbers (a, b) does the series
∑∞

n=3 n
a(log n)b converge?

Solution:
By the integral test this is equivalent to asking for convergence of the integra l∫ ∞

x=3

xa(log x)bdx

This converges if a < −1 and diverges if a > −1 by comparison with
∫
xsdx. If a = −1 then

it converges for b < −1 and diverges if b > −1 again by doing t he integral explicitly, using
the fact that the derivative of (log x)b+1 i s (b+ 1)(log x)bx−1. For a = b = −1 it diverges as
the derivative of log log x is x−1(log x)−1.
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Problem 2B. Score:

Say that a metric space X has property (A) if the image of every continuous function
f : X → R is an interval, which may be open, closed or half-open. Prove that X has
property (A) if and only if it is connected.

Solution:
Suppose that X does not have property (A). Then there is a continuous function f :

X → R whose image is not an interval. If X is connected then f(X) is a connected subset
of R, which must be an interval. Hence X is not connected.

Suppose that X is not connected. Write X = X1 ∪X2, where X1 and X2 are nonempty
disjoint open subsets. Define f : X → R to be one on X1 and two on X2. Then f is
continuous and its image is not an interval. Hence X does not have property (A).
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Problem 3B. Score:

Suppose that f : (0, 1) → R is a continuous function with
∫ 1

0
|f(t)| dt < ∞. Define g :

(0, 1)→ R by

g(x) =

∫ 1

x

f(t)

t
dt.

Show that
∫ 1

0
|g(x)| dx <∞.

Solution:
For any ε > 0,∫ 1

ε

|g(x)| dx =

∫ 1

ε

∣∣∣∣∫ 1

x

f(t)

t
dt

∣∣∣∣ dx ≤ ∫ 1

ε

∫ 1

x

|f(t)|
t

dt dx

=

∫ 1

ε

∫ t

ε

|f(t)|
t

dx dt =

∫ 1

ε

(
1− ε

t

)
|f(t)| dt ≤

∫ 1

0

|f(t)| dt.

Hence
∫ 1

0
|g(x)| dx <∞.
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Problem 4B. Score:

Compute

lim
N→∞

∫ N

−N

x sin(x)

x2 + 1
dx.

Solution:
Let CN be the circular arc in the upper half plane of radius N around the origin, oriented

counterclockwise. For N large.∫ N

−N

xeix

x2 + 1
dx+

∫
CN

zeiz

z2 + 1
dz = 2πi Resz=i

zeiz

z2 + 1
=
π

e
i.

By Jordan’s Lemma, limN→∞
∫
CN

zeiz

z2+1
dz = 0. Taking imaginary parts gives

lim
N→∞

∫ N

−N

x sin(x)

x2 + 1
dx =

π

e
.
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Problem 5B. Score:

Let U ⊂ C be a bounded open set containing 0, and let f : U → U be an analytic
function, whose Taylor series at 0 is

f(z) = z + a2z
2 + a3z

3 + . . .

Prove that a2 = 0. (Hint : consider the functions gn(z) = f ◦. . .◦f(z) obtained by composing
f with itself n times.)

Solution:
Suppose that U is contained in {z : |z| ≤ R} for some R <∞. Then |gn(z)| ≤ R for all

z ∈ U . The Taylor series expansion of gn is gn(z) = z + na2z
2 + . . .. If U contains B(0, ε)

then

na2 =
1

2πi

∫
|z|=ε

gn(z)

z3
dz

and n|a2| ≤ R
ε2

. Taking n→∞ implies that a2 = 0.
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Problem 6B. Score:

Is it possible to find two real 2 × 2 matrices A,B such that A2 = B2 = Id (the identity
matrix), but AB has eigenvalues 2 and 1/2?

Solution:
Yes. Take

A =

(
1 0
0 −1

)
B =

(
a b
c d

)
Then require trB = a+d = 0, detB = ad− bc = −1, so d = −a. Then require trAB = 2a =
5/2, detAB = a2 + bc = 1. Solve for example by

B =

(
5/4 1
−21/4 −5/4

)
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Problem 7B. Score:

Suppose that A is an m by n complex matrix and B is an n by m complex matrix, and
write Im for the m by m identity matrix. Show that if Im − AB is invertible then so is
In−BA. (Hint: what does the condition that Im−X is not invertible say about eigenvalues
and eigenvectors of X?)

Solution:
Im − AB fails to be invertible exactly when it has an eigenvalue 0, in other words when

there is a nonzero vector v in Rm fixed by AB. But then Bv is a vector in Rn fixed by BA,
so In −BA fails to be invertible.
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Problem 8B. Score:

Prove that if n is coprime to N = 561 then nN−1 ≡ 1 mod N .

Solution:
The prime factors p of N are 3, 11, and 17 (each of which divides it to just the first

power). For each prime factor p of N , N − 1 is divisible by p − 1 so nN−1 ≡ 1 mod p by
Fermat’s theorem. So nN−1 ≡ 1 mod N .
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Problem 9B. Score:

How many irreducible polynomials of degree exactly 6 are there over the finite field with 3
elements?

Solution: 2(36−33−32 + 31)/6. The first factor of 2 is the possible leading coefficients, the
second factor is the number of elements of the field of order 36 not in any smaller field, and
the third factor of 1/6 comes because each irreducible polynomial of degree 6 has 6 distinct
roots generating this field.


