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YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 1A. Score:

(a) Prove that if s > 1 then
∑

n>0 n
−s =

∏
p 1/(1−p−s), where the product is over all primes

p.

(b) Prove that the sum
∑

p 1/p over all primes p diverges.

Solution: Part (a) follows by expanding 1/(1−p−s) as the geometric series 1+p−s+p−2s · · · ,
convergent for s > 1, multiplying these series together, and using the fundamental theorem
of arithmetic.

Part (b) follows because the left hand side of (a) tends to infinity as s tends to 1, so the
product of 1/(1− p−1) diverges, so the corresponding sum of p−1 diverges.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 2A. Score:

Let x : [a, b]→ R and f : [a, b]→ R be non-negative continuous functions satisfying

x2(t) ≤ 1 +

∫ t

a

f(s)x(s)ds

for a ≤ t ≤ b. Show that

x(t) ≤ 1 +
1

2

∫ t

a

f(s)ds

for a ≤ t ≤ b.

Solution: Let

y(t) = 1 +

∫ t

a

f(s)x(s)ds

so that
x(t) ≤

√
y(t).

Then
y′(t) = f(t)x(t) ≤ f(t)

√
y(t),

that is,
y′/
√
y = (2y1/2)′ ≤ f.

Integrating this gives

x(t) ≤
√
y(t) ≤ 1 +

1

2

∫ t

a

f(s)ds.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 3A. Score:

Given K ≥ 0, let LipK be the set of functions f : R → R which satisfy |f(x) − f(y)| ≤
K|x− y| for all x, y ∈ R.

(a) Show that the formula

d(f1, f2) =
∞∑
j=1

2−j sup
z∈[−j,j]

|f1(z)− f2(z)|

converges and defines a metric d on LipK .

(b) Show that LipK is a complete metric space with this metric.

Solution:
(a) The Lipschitz condition implies a bound |f1(x)−f2(x)| ≤ C+2Kj for all x in [−j, j],

where C = |f1(0) − f2(0)|. Since the series
∑∞

j=1 2−j(C + 2Kj) is convergent, so is the
right hand side in (a). The triangle inequality follows from triangle inequality for each term.
We also have to check that d(f1, f2) = 0 implies f1 = f2. But every term in the sum is
non-negative, so d(f1, f2) = 0 implies supz∈[−j,j] |f1(z)− f2(z)| = 0 for all j.

(b) Let {fi}∞i=1 be a Cauchy sequence in LipK . For any given x ∈ R, if we pick j ≥ |x|,
then |fi(x) − fj(x)| ≤ 2jd(fi, fj). Hence {fi(x)} is a Cauchy sequence, so the fi converge
pointwise. It is easy to see that the limit g belongs to LipK .

It remains to show that d(fi, g) converges to zero.
The Lipschitz condition implies that the fi converge uniformly to g on each [−j, j]. To

prove this, given ε > 0, we can choose points x1, . . . , xn ∈ [−j, j] such that every x ∈ [−j, j]
has |x− xi| < ε/4K for some i, then choose k large enough so that |fl(xi)− g(xi)| < ε/2 for
all i whenever l > k. Then it follows that |fl(x)− g(x)| < ε for all x ∈ [−j, j].

Since {fi(0)} converges, it is bounded, hence there is a D such that |fi(0) − g(0)| < D
for all i. The Lipschitz condition then implies |fi(x) − g(x)| < D + 2Kj for all x ∈ [−j, j]
and all i. Given ε > 0, we can choose J large enough so that

∑∞
j=J+1(D + 2Kj)2−j < ε/2,

and therefore d(fi, g) < ε/2 +
∑J

j=1 2−j supz∈[−j,j] |fi(z) − g(z)| for all i. By the uniform

convergence on each [j, j], the finite sum
∑J

j=1 2−j supz∈[−j,j] |fi(z) − g(z)| is less than ε/2,
and therefore d(fi, g) < ε, for all sufficiently large i.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 4A. Score:

Find ∫ ∞
−∞

sin3(x)

x3
dx.

Solution: Write

sin3(z) =

(
eiz − e−iz

2i

)3

=
e3iz − 3eiz + 3e−iz − e−3iz

−8i
= −1

4
Im(e3iz − 3eiz).

Now use ∫
C

e3iz − 3eiz

z3
dz = 0,

where the contour C consists of the intervals [−R, r] and [r, R] on the real axis, and semicircles
in the upper half-plane of radii r and R. Letting r → 0 and R→∞, the contribution from
the big semicircle vanishes. Since the leading term of e3iz − 3eiz is −9z2/2 + 3z2/2 = −3z2,
the contribution from the small semicircle is the same as that of∫

−3

z
dz,

or 3πi.
The contribution along the x axis is therefore∫ ∞

−∞

e3iz − 3eiz

z3
dz = −3πi.

It follows that the value of our original integral is 3π/4.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 5A. Score:

Is there a function f(z) analytic in C \ {0} such that |f(z)| ≥ 1√
|z|

for all z 6= 0?

Solution: Suppose f is such a function. Then g(z) = 1/f(z) is analytic in C \ {0} and
|g(z)| ≤ |z|1/2 for all z 6= 0. In particular, g(z) is bounded in a punctured neighborhood
of zero so by Riemann’s theorem on removable singularities it has a removable singularity
there. Redefining g(0) := limz→0 g(z) we obtain an entire function. By Cauchy’s integral
formula we have for any z:

g′(z) =
1

2πi

∮
CR

g(s)

(s− z)2
ds,

where CR is any circle centered at zero containing z and the integral is taken counterclockwise.
Note that |g(s)| ≤

√
R on CR and that |s− z|2 > (R/2)2 whenever R > 2|z|. Thus,

|g′(z)| < 2πR

2π
· 4
√
R

R2
=

4√
R

whenever R > 2|z|. Letting R→∞ we find that g′(z) = 0 for all z ∈ C, whence g must be
constant. But |g(z)| ≤

√
|z| in a neighborhood of zero, so this is only possible if g(z) = 0, a

contradiction. Thus, no such function f can exist.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 6A. Score:

Fix N ≥ 1. Let s1, . . . , sN , t1, . . . , tN be 2N complex numbers of magnitude less than or
equal to 1. Let A be the N ×N matrix with entries

Aij = exp (tisj).

Show that for every m ≥ 1 there is an N × N matrix B with rank less than or equal to m
such that

|Aij −Bij| ≤
2

m!

for all i and j.

Solution: By Taylor expansion,

| exp(z)−
m−1∑
n=0

zn

n!
| ≤

∞∑
n=m

1

n!
≤ 2

m!

whenever |z| ≤ 1. Hence

Bij =
m−1∑
n=0

(tisj)
n

n!
=

m−1∑
n=0

1

n!
tni s

n
j

gives the entries of a matrix B of rank less than or equal to m with

|Aij −Bij| ≤
2

m!
.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 7A. Score:

Let A and B be two n× n matrices with coefficients in Q. For any field extension K of
Q, we say that A and B are similar over K if A = PBP−1 for some n× n invertible matrix
P with coefficients in K. Prove that A and B are similar over Q if and only if they are
similar over C.

Solution:
The “only if” part is trivial. For the “if” part, assume that A and B are similar over C,

and we are going to prove that A and B are similar over Q. We first rewrite the problem as
solutions of equations and inequalities.

Denote by xij the (i, j)-entry of P . Rewrite A = PBP−1 as AP = PB, and view it as a
system of linear equations on the variables {xij}i,j. The coefficients of the linear equations
are in Q. The condition that P is invertible is equivalent to the inequality det(P ) 6= 0, where
det(P ) is viewed as a polynomial of the variables {xij}i,j with coefficients in Q.

The condition that A and B are similar over C is equivalent to the statement that the
system

AP = PB, det(P ) 6= 0

has a solution (xij) ∈ Cn2
. We need to prove that the system has a solution (xij) ∈ Qn2

.
Denote by W (resp. V ) the set of solutions of (xij) ∈ Cn2

(resp. (xij) ∈ Qn2
) for the

equation AP = PB. Then W (resp. V ) is a vector subspace of Cn2
(resp. Qn2

) over C
(resp. Q), and we have a natural isomorphism W = V ⊗QC. We see that V is nonzero since
W is nonzero. This shows that AP = PB has nonzero rational solutions, and we are left to
consider the condition det(P ) 6= 0.

Take a basis of V over Q, and make an identification V = Qm by this basis. This basis
also gives an identification W = Cm. The restriction of det(P ) to V becomes a polynomial
f(y1, · · · , ym) ofm variables with rational coefficients via the identification. By the condition,
f is not identically zero over Cm, so it is not the zero polynomial. Hence, we can find an
element of Qm at which f is nonzero. This element gives the desired solution (xij) ∈ Qn2

of
the system.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 8A. Score:

Let M2(Q) be the ring of all 2 × 2 matrices with coefficients in Q. Describe all field
extensions K of Q such that there is an injective ring homomorphism K → M2(Q). (Note:
we take the convention that a ring homomorphism maps the multiplicative identity to the
multiplicative identity.)

Solution:
Our conclusion is that K is either Q or a quadratic extension of Q.
For the necessity, let K be an extension of Q with an injective ring homomorphism

i : K →M2(Q). The homomorphism is Q-linear, so we have

[K : Q] ≤ dimQM2(Q) = 4.

In particular, K is a finite extension of Q. Assume K = Q(α), so that α is a generator of
K over Q. By the Cayley–Hamilton theorem, i(α) is annihilated by its characteristic poly-
nomial, which has degree 2 and rational coefficients. Thus α is annihilated by a polynomial
of degree 2 with rational coefficients. This proves that [K : Q] ≤ 2.

For the sufficiency, assume that K is an extension of Q with [K : Q] ≤ 2, and we
need to construct an injective ring homomorphism i : K → M2(Q). If K = Q, take the
usual embedding sending rational numbers to the corresponding scalar matrices. If K is a
quadratic extension of Q, write V = K, viewed as a 2-dimensional vector space over Q. Let
K act on V by multiplication. The action is Q-linear, and thus induces a homomorphism
K → EndQ(V ) ' M2(Q). This map is the desired injective homomorphism. Alternatively,
write K = Q(

√
d), and define an injection K →M2(Q) by the explicit formula

a+ b
√
d 7−→

(
a b
bd a

)
.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 9A. Score:

Let p be a prime number, Fp be the finite field of p elements, and GLn(Fp) be the finite
group of all invertible n× n matrices with coefficients in Fp. Find the order of GLn(Fp).

Solution:
Let A be an element of GLn(Fp), and denote the columns of A by A1, · · · , An. Note that

A1 can be any element of Fn
p \ {0}, which has pn− 1 choices. Then A2 can be any element of

Fn
p \ span{A1}, which has pn− p choices. In general, for i = 1, · · · , n, Ai can be any element

of Fn
p \ span{A1, · · · , Ai−1}, which has pn − pi−1 choices. Hence, the total number of choices

are
(pn − 1)(pn − p) · · · (pn − pn−1).

This number is the order of GLn(Fp).
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GRADUATE PRELIMINARY EXAMINATION, Part B Fall Semester 2016

1. Please write your 1- or 2-digit exam number on this cover sheet and on all problem
sheets (even problems that you do not wish to be graded).

2. Indicate below which six problems you wish to have graded. Cross out solutions you
may have begun for the problems that you have not selected.

3. Extra sheets should be stapled to the appropriate problem at the upper right corner.
Do not put work for problem p on either side of the page for problem q if p 6= q.

4. No notes, books, calculators or electronic devices may be used during the exam.

PROBLEM SELECTION

Part B: List the six problems you have chosen:

, , , , ,



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 1B. Score:

Let C =
∫∞
−∞ e

−x2
dx and let Sn be the (n− 1)-dimensional “surface area” of the unit sphere

in Rn (so S2 = 2π, S3 = 4π/3).

(a) Prove that Cn = Sn Γ(n/2)/2, where Γ(s) =
∫∞
0
e−tts−1dt. (Evaluate the integral of

e−(x
2
1+···+x2

n) over Rn in rectangular and polar coordinates.)

(b) Show that sΓ(s) = Γ(s+ 1), Γ(1) = 1.

(c) Evaluate C. (Hint: S2 = 2π.)

(d) Evaluate S4.

Solution:
(a) The integral in rectangular coordinates is Cn, and the integral in polar coordinates

is Sn

∫∞
0
e−r

2
rn−1dr. Substitute t = r2.

(b) Integrate by parts.
(c) Put n = 2 in part (a) to get C2 = S2Γ(1)/2 = π, so C =

√
π.

(d) By (a) S4 is 2C4/Γ(2) = 2π2.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 2B. Score:

Let K be a compact subset of Rn and f(x) = d(x,K) be the Euclidean distance from x
to the nearest point of K.

(a) Show that f is continuous and f(x) = 0 if x ∈ K.

(b) Let g(x) = max(1− f(x), 0). Show that
∫
gn converges to the n-dimensional volume

of K as n→∞.

(The n-dimensional volume of K is defined to be
∫

1K , if the integral exists, where
1K(x) = 1 for x ∈ K, and 1K(x) = 0 for x 6∈ K.)

Solution:
(a) Note that for any x, there is a nearest point of K to x, that is, d(x, y) assumes a

minimum for y ∈ K, since K is compact.
Obviously f(x) = 0 if x ∈ K. For any two points x, y ∈ Rn, the triangle inequality

implies that d(x,K) ≤ d(y,K) + d(x, y) and d(y,K) ≤ d(x,K) + d(x, y). This shows that
|f(x)− f(y)| ≤ d(x, y), hence f is continuous.

(b) Since K is compact, it is bounded. Hence the set of points x such that d(x,K) ≤ 1 is
also bounded, and g vanishes outside this set. This implies that

∫
gn exists for all n. Clearly

gn converges monotonically to 1K . Hence
∫

1K exists and is equal to limn→∞
∫
gn.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 3B. Score:

(a) Suppose that I is a closed interval and f is a smooth function from I to I such that |f ′|
is bounded by some number r < 1 on I. Let a0 be in I and put an+1 = f(an). Prove that
the sequence an tends to the unique root of f(x) = x in I.

(b) Show that if a0 is real and an+1 = cos(an) then an tends to a root of cos(x) = x.

Solution:
(a) Say I = [a, b]. Since f maps I into I, f(a) − a ≥ 0 and f(b) − b ≤ 0. Since f is

continuous, f(x)−x = 0 has at least one root. If f(x) = x had more than one root, it would
imply f ′(c) = 1 for some c ∈ I by the Mean Value Theorem. Hence the root is unique.

Changing variables we may assume that f(0) = 0. Then |f(x)| ≤ r|x| for all x in I, so
|an+1| ≤ r|an|. As r < 1, this proves that the sequence an tends to 0.

(b) Note that a1 ∈ [−1, 1], hence a2 ∈ [cos(1), 1] and a3 ∈ [cos(1), cos(cos(1))]. Taking I
to be this last interval, cosx maps I into itself, and since 0 < cos(1) < cos(cos(1)) < 1 < π/2,
the derivative cos′ x = − sinx has absolute value less than some r < 1 on I. Now apply part
(a).



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 4B. Score:

Put f(z) = z(ez − 1). Prove there exists an analytic function h(z) defined near z = 0
such that f(z) = h(z)2. Find the first 3 terms in the power series expansion h(z) =

∑
anz

n.
Does h(z) extend to an entire function on C?

Solution:
The function f vanishes to order 2 at 0, so there is a holomorphic function g defined on

all of C such that f(z) = z2g(z), and g(0) 6= 0. Since g is continuous, it is nonzero on some
neighborhood U of the origin. Shrinking U , we may choose a branch of log(g(z)). Define h
on U by

h(z) = ze
1
2
log(g(z));

then f(z) = h(z)2.
Choosing the sign of ±h to have positive leading coefficient, the power series expansion

of h is

h(z) = z +
1

4
z2 +

5

96
z3 + . . .

The function h does not extend to an entire function on C because such an extension
would be a global square root of f , which cannot exist because f has a simple zero at 2πi.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 5B. Score:

Let ft(z) be a family of entire functions depending analytically on t ∈ ∆, where ∆ is the
open unit disk in C. Suppose that for all t, ft(z) is non-vanishing on the unit circle S1 in C.
Prove that for each k ≥ 0,

Nk(t) =
∑

|z|<1:ft(z)=0

zk

is an analytic function of t (the zeroes of ft(z) are taken with multiplicity in the sum).

Solution:
By the residue theorem, for each t ∈ ∆ we have

Nk(t) =
1

2πi

∫
S1

f ′t(z)zk

ft(z)
dz.

This integral representation makes it clear that Nk(t) is analytic in t (for example, by Mor-
era’s theorem).



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 6B. Score:

Let A be an m× n matrix of rank r and B a p× q matrix of rank s. Find the dimension
of the vector space of n× p matrices X such that AXB = 0.

Solution:
Let W ⊆ Rn be the nullspace of A and V ⊆ Rp the column space of B. The problem

then asks for the dimension of the space of linear transformations T : Rp → Rn such that
T (V ) ⊆ W . Changing bases in Rn and Rp, we see that the answer depends only on the
dimensions dim(V ) = s and dim(W ) = n− r. In particular, we are free to assume that V is
the span of the first s unit vectors, and W is the space of vectors whose first r coordinates
are zero.

In that case, X is any n× p matrices whose upper-left r × s block is zero. These form a
space of dimension np− rs.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 7B. Score:

Find an example of a vector space V over the real numbers R and two linear maps
f, g : V → V such that f is injective but not surjective and g is surjective but not injective
and such that f + g is equal to the identity map 1V .

Hint: construct V as a subspace of the space of sequences of real numbers, closed under
the linear maps

f(a1, a2, a3, . . .) = (a1 − a2, a2 − a3, . . .)

and
g(a1, a2, a3, . . .) = (a2, a3, . . .).

Solution:
Following the hint, the space V of sequences which converge to zero works.
Obviously, f + g = 1V . It is also clear that the map g is surjective but not injective. To

see that f is injective, note that the kernel of f is the set of constant sequences (a, a, a, . . .)
which converge to zero (by the definition of V ), forcing a = 0. To see that f is not surjective,
we argue, for example, that there is no sequence (a1, a2, a3, . . .) ∈ V such that

(a1 − a2, a2 − a3, a1 − a4, . . .) =
(
− 1

1
,−1

2
,−1

3
, . . .

)
.

Otherwise, we would have

ak+1 = ak +
1

k
,

which would imply by induction

ak = a1 +
1

1
+ . . .+

1

k − 1
.

This gives us a contradiction, since the left-hand side converges to zero by definition and
the right-hand side diverges. Of course, the same argument works with any divergent series
whose terms converge to zero in place of the harmonic series.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 8B. Score:

Let G be a group and n be a positive integer. Assume that there exists a surjective group
homomorphism Zn → G and an injective group homomorphism Zn → G. Prove that the
group G is isomorphic to Zn.

Solution:
By the surjection Zn → G, G is an abelian group generated by n elements. In particular,

G is a finitely generated abelian group. By the structure theorem, G is isomorphic to Zr×G0,
where r ≥ 0 and G0 is a finite abelian group. By the injection Zn → G, we have r ≥ n.
Use the property that G is generated by n elements again, we have r = n and G0 = 0. This
proves that G is isomorphic to Zn.



YOUR EXAM NUMBER
Please cross out this problem if you do not wish it graded

Problem 9B. Score:

Find (with proof) the number of groups of order 12 up to isomorphism. You may assume
the Sylow theorems (if a prime power pn is the largest power of p dividing the order of a
group, then the group has subgroups of order pn and the number of them is 1 mod p.)

Solution: By Sylow’s theorems, there are either 1 or 4 subgroups of order 3.
If there is 1 subgroup of order 3 it is normal, so the group is a semidirect product of

this subgroup with a Sylow subgroup of order 4. This gives 4 possibilities, as the subgroup
of order 4 can be cyclic or the Klein 4-group, and each of these can act either trivially or
non-trivially on the group of order 3.

If there are 4 subgroups of order 3, there are 4 elements not of order 3, which must
therefore form the normal Sylow 2-subgroup. The group is a semidirect product of this
Sylow 2-subgroup by a group of order 3 acting nontrivially, and the only possibility is the
semidirect product of a cyclic group of order 3 acting nontrivially on the Klein 4-group.

So there are 5 groups of order 12.


