K. Lesh G. Thompson 23 Sept. 1995

Topology Qualifying Exam

The Ph.D. qualifying exam committee tries to proofread the examinations as carefully as possible. Nevertheless, the exam may contain misprints. If you are convinced a problem has been stated incorrectly, mention this to the proctor and indicate your interpretation in your solution. In such cases do not interpret the problem in such a way that it becomes trivial.

Directions: Do four problems in each section. Budget your time. Write your solution for each question on a separate page.

Section I

1. Let A and B be closed subspaces of a topological space X with $X = A \bigcup B$. Suppose that $f : A \to Y$ and $g : B \to Y$ are continuous, and f(x) = g(x) for all $x \in A \cap B$.

Prove that $h: X \to Y$ by

$$h(x) = \begin{cases} f(x) & \text{if } x \in A\\ g(x) & \text{if } x \in B \end{cases}$$

is continuous. Is it necessary for both A and B to be closed? Discuss.

- 2. Let $f: X \to Y$ by a quotient map. Let Y be connected and suppose that for each $y \in Y$, $f^{-1}(y)$ is connected. Prove that X is connected.
- 3. Let I be a non empty index set, let $\{X_{\alpha} | \alpha \in I\}$ be a family of topological spaces, and let $A_{\alpha} \subseteq X_{\alpha}$ for each α .
 - (a) Show that if A_{α} is closed in X_{α} for each α , then $\prod A_{\alpha}$ is closed in $\prod X_{\alpha}$.
 - (b) Show that $\overline{\prod A_{\alpha}} = \prod \overline{A_{\alpha}}$.
 - (c) Prove or disprove: If A_{α} is open in X_{α} for each α , then $\prod A_{\alpha}$ is open in $\prod X_{\alpha}$.
- 4. Let *D* be the closed unit disk in the complex plane. Let \sim be the equivalence relation on *D* defined by $z_1 \sim z_2$ if and only if $z_1 = z_2$ or $|z_1| = |z_2| < 1$. Is the quotient topological space Hausdorff? (Prove your assertion.)
- 5. State the definition of compactness for topological spaces. Prove from your definition that the closed unit interval [0, 1] is compact.

Section II

- 1. Define what it means for Y to be a strong deformation retract of X, where $Y \subseteq X$ are topological spaces. Prove that if $i: Y \to X$ is the inclusion map and $y \in Y$, then the induced homomorphism $i_*: \pi_1(Y, y) \to \pi_1(X, y)$ is an isomorphism.
- 2. Prove by any method you know that:
 - (a) \Re is not homeomorphic to \Re^2 .
 - (b) \Re^2 is not homeomorphic to \Re^3 .
- 3. Let X_1 and X_2 be two copies of S^2 and let N_1, S_1 and N_2, S_2 be the north and south poles of X_1 and X_2 , respectively. Define X to be the quotient space obtained by identifying N_1 with N_2 and S_1 with S_2 . Compute the fundamental group of X by using the Seifert-van Kampen theorem.
- 4. (a) Define a covering space.
 - (b) State the main theorem about path lifting and covering spaces.
 - (c) Let $S^1 \bigvee \Re P^2$ be the one point union of the circle and two dimensional real projective space, *i.e.* the quotient space obtained by taking the disjoint union of S^2 and $\Re P^2$ and then identifying a single point $x \in S^2$ with a single point in $y \in \Re P^2$. Describe the universal cover of $S^1 \bigvee \Re P^2$.
 - (d) Describe the fundamental group of $S^1 \bigvee \Re P^2$.
- 5. Prove that \Re^2 cannot be retracted to S^1 .