Preliminary Exam - Fall 1978

Problem 1 Let $f : \mathbb{R} \to \mathbb{R}$ satisfy $f(x) \leq f(y)$ for $x \leq y$. Prove that the set where f is not continuous is finite or countably infinite.

Problem 2 Let $\{g_n\}$ be a sequence of Riemann integrable functions from [0,1] into \mathbb{R} such that $|g_n(x)| \leq 1$ for all n, x. Define

$$G_n(x) = \int_0^x g_n(t) \, dt \, .$$

Prove that a subsequence of $\{G_n\}$ converges uniformly.

Problem 3 Let $M_{n \times n}$ denote the vector space of $n \times n$ real matrices. Prove that there are neighborhoods U and V in $M_{n \times n}$ of the identity matrix such that for every A in U, there is a unique X in V such that $X^4 = A$.

Problem 4 Evaluate

$$\int_0^{2\pi} \frac{d\theta}{1 - 2r\cos\theta + r^2}$$

where $r^2 \neq 1$.

Problem 5 Let $f(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a complex polynomial of degree n > 0. Prove

$$\frac{1}{2\pi i} \int_{|z|=R} z^{n-1} |f(z)|^2 \, dz = a_0 \overline{a}_n R^{2n}.$$

Problem 6 Solve the differential equation

$$\frac{dy}{dx} = x^2y - 3x^2, \quad y(0) = 1.$$

Problem 7 Let H be a subgroup of a finite group G.

- 1. Show that H has the same number of left cosets as right cosets.
- 2. Let G be the group of symmetries of the square. Find a subgroup H such that $xH \neq Hx$ for some x.

Problem 8 Let M be the $n \times n$ matrix over a field \mathbf{F} , all of whose entries are equal to 1.

- 1. Find the characteristic polynomial of M.
- 2. Is M diagonalizable?
- 3. Find the Jordan Canonical Form of M and discuss the extent to which the Jordan form depends on the characteristic of the field \mathbf{F} .

Problem 9 For $x, y \in \mathbb{C}^n$, let $\langle x, y \rangle$ be the Hermitian inner product $\sum_j x_j \overline{y}_j$. Let T be a linear operator on \mathbb{C}^n such that $\langle Tx, Ty \rangle = 0$ if $\langle x, y \rangle = 0$. Prove that T = kS for some scalar k and some operator S which is unitary: $\langle Sx, Sy \rangle = \langle x, y \rangle$ for all x and y.

Problem 10 How many homomorphisms are there from the $group\mathbb{Z}_2 \times \mathbb{Z}_2$ to the symmetric group on three objects?

Problem 11 Let $W \subset \mathbb{R}^n$ be an open connected set and f a real valued function on W such that all partial derivatives of f are 0. Prove that f is constant.

Problem 12 Let $f : \mathbb{R}^n \to \mathbb{R}$ have the following properties: f is differentiable on $\mathbb{R}^n \setminus \{0\}$, f is continuous at 0, and

$$\lim_{p \to 0} \frac{\partial f}{\partial x_i}(p) = 0$$

for i = 1, ..., n. Prove that f is differentiable at 0.

Problem 13 1. Show that if $u, v : \mathbb{R}^2 \to \mathbb{R}$ are continuously differentiable and $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$, then $u = \frac{\partial f}{\partial x}$, $v = \frac{\partial f}{\partial y}$ for some $f : \mathbb{R}^2 \to \mathbb{R}$.

2. Prove there is no $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ such that

$$\frac{\partial f}{\partial x} = \frac{-y}{x^2 + y^2}$$
 and $\frac{\partial f}{\partial y} = \frac{x}{x^2 + y^2}$.

Problem 14 Give examples of conformal maps as follows:

1. from $\{z \mid |z| < 1\}$ onto $\{z \mid \Re z < 0\}$,

- 2. from $\{z \mid |z| < 1\}$ onto itself, with f(0) = 0 and f(1/2) = i/2,
- 3. from $\{z \mid z \neq 0, 0 < \arg z < \frac{3\pi}{2}\}$ onto $\{z \mid z \neq 0, 0 < \arg z < \frac{\pi}{2}\}$.

Problem 15 Suppose h(z) is analytic in the whole plane, h(0) = 3+4i, and $|h(z)| \leq 5$ if |z| < 1. What is h'(0)?

Problem 16 Which of the following matrices are similar as matrices over \mathbb{R} ?

$$(a) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (b) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, (c) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (d) \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, (e) \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, (f) \begin{pmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Problem 17 Find all automorphisms of the additive group of rational numbers.

Problem 18 Prove that every finite multiplicative group of complex numbers is cyclic.

Problem 19 Let

$$A = \begin{pmatrix} 1 & 2\\ 1 & -1 \end{pmatrix}.$$

Express A^{-1} as a polynomial in A with real coefficients.

Problem 20 Let $M_{n \times n}$ be the vector space of real $n \times n$ matrices, identified with \mathbb{R}^{n^2} . Let $X \subset M_{n \times n}$ be a compact set. Let $S \subset \mathbb{C}$ be the set of all numbers that are eigenvalues of at least one element of X. Prove that S is compact.