Preliminary Exam - Fall 1979

Problem 1 Prove that the polynomial

$$p(z) = z^{47} - z^{23} + 2z^{11} - z^5 + 4z^2 + 1$$

has at least one root in the disc |z| < 1.

Problem 2 Suppose that f is analytic on the open upper half-plane and satisfies $|f(z)| \leq 1$ for all z, f(i) = 0. How large can |f(2i)| be under these conditions?

Problem 3 Prove that every finite group of order > 2 has a nontrivial automorphism.

Problem 4 Consider the polynomial ring $\mathbb{Z}[x]$ and the ideal \mathfrak{I} generated by 7 and x - 3.

- 1. Show that for each $r \in \mathbb{Z}[x]$, there is an integer α satisfying $0 \leq \alpha \leq 6$ such that $r \alpha \in \mathfrak{I}$.
- 2. Find α in the special case $r = x^{250} + 15x^{14} + x^2 + 5$.

Problem 5 Let A be a real skew-symmetric matrix $(A_{ij} = -A_{ji})$. Prove that A has even rank.

Problem 6 Let N be a linear operator on an n-dimensional vector space, n > 1, such that $N^n = 0$, $N^{n-1} \neq 0$. Prove there is no operator X with $X^2 = N$.

Problem 7 Let V be the vector space of sequences (a_n) of complex numbers. The shift operator $S: V \to V$ is defined by

$$S((a_1, a_2, a_3, \ldots)) = (a_2, a_3, a_4, \ldots).$$

1. Find the eigenvectors of S.

- 2. Show that the subspace W consisting of the sequences (x_n) with $x_{n+2} = x_{n+1} + x_n$ is a two-dimensional, S-invariant subspace of V and exhibit an explicit basis for W.
- 3. Find an explicit formula for the n^{th} Fibonacci number f_n , where $f_2 = f_1 = 1$, $f_{n+2} = f_{n+1} + f_n$ for $n \ge 1$.

Note: See also Problem ??.

Problem 8 Prove that

$$\lim_{n \to \infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \right) = \log 2.$$

Problem 9 Given that

$$\int_{-\infty}^{\infty} e^{-x^2} \, dx = \sqrt{\pi} \; ,$$

find f'(t) explicitly, where

$$f(t) = \int_{-\infty}^{\infty} e^{-tx^2} dx, \quad t > 0.$$

Problem 10 Solve the differential equations

$$\frac{dx}{dt} = -3x + 10y$$
$$\frac{dy}{dt} = -3x + 8y.$$

Problem 11 An accurate map of California is spread out flat on a table in Evans Hall, in Berkeley. Prove that there is exactly one point on the map lying directly over the point it represents.

Problem 12 Consider the following properties of a function $f : \mathbb{R}^n \to \mathbb{R}$:

- 1. f is continuous.
- 2. The graph of f is connected in $\mathbb{R}^n \times \mathbb{R}$.

Prove or disprove the implications $1 \Rightarrow 2$, $2 \Rightarrow 1$.

Problem 13 Let $\{P_n\}$ be a sequence of real polynomials of degree $\leq D$, a fixed integer. Suppose that $P_n(x) \to 0$ pointwise for $0 \leq x \leq 1$. Prove that $P_n \to 0$ uniformly on [0, 1].

Problem 14 Let y = y(x) be a solution of the differential equation y'' = -|y|with $-\infty < x < \infty$, y(0) = 1 and y'(0) = 0.

- 1. Show that y is an even function.
- 2. Show that y has exactly one zero on the positive real axis.

Problem 15 Suppose f and g are entire functions with $|f(z)| \leq |g(z)|$ for all z. Prove that f(z) = cg(z) for some constant c.

Problem 16 Prove that

$$\int_0^\infty \frac{x^{\alpha-1}}{1+x} \, dx = \frac{\pi}{\sin \pi \alpha} \cdot$$

What restrictions must be placed on α ?

Problem 17 Let A be an $n \times n$ complex matrix. Prove there is a unitary matrix U such that $B = UAU^{-1}$ is upper-triangular: $B_{jk} = 0$ for j > k.

Problem 18 Let B denote the matrix

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$

where a, b, and c are real and |a|, |b|, and |c| are distinct. Show that there are exactly four symmetric matrices of the form BQ, where Q is a real orthogonal matrix of determinant 1.

Problem 19 Let $M_{n \times n}(\mathbf{F})$ be the ring of $n \times n$ matrices over a field \mathbf{F} . Prove that it has no 2-sided ideals except $M_{n \times n}(\mathbf{F})$ and $\{0\}$.

Problem 20 Let G be the abelian group defined by generators x, y, and z, and relations

$$15x + 3y = 0$$
$$3x + 7y + 4z = 0$$
$$18x + 14y + 8z = 0.$$

- 1. Express G as a direct product of two cyclic groups.
- 2. Express G as a direct product of cyclic groups of prime power order.
- 3. How many elements of G have order 2?