Preliminary Exam - Fall 1980

Problem 1 Define

$$F(x) = \int_{\sin x}^{\cos x} e^{(t^2 + xt)} dt.$$

Compute F'(0).

Problem 2 Are the matrices give below similar ?

	(1	0	0)			(1	1	0
A =	-1	1	1	and	B =	0	1	0
	$\sqrt{-1}$	0	2]			$\left(0 \right)$	0	2/

Problem 3 Do there exist functions f(z) and g(z) that are analytic at z = 0and that satisfy

1. $f(1/n) = f(-1/n) = 1/n^2, n = 1, 2, ...,$

2.
$$g(1/n) = g(-1/n) = 1/n^3, n = 1, 2, ...?$$

Problem 4 Let G be the group of orthogonal transformations of \mathbb{R}^3 to \mathbb{R}^3 with determinant 1. Let $v \in \mathbb{R}^3$, |v| = 1, and let $H_v = \{T \in G \mid Tv = v\}$.

- 1. Show that H_v is a subgroup of G.
- 2. Let $S_v = \{T \in G \mid T \text{ is a rotation of } 180^\circ \text{ about a line orthogonal to } v\}$. Show that S_v is a coset of H_v in G.

Problem 5 Evaluate

$$\int_0^\infty \frac{x^{m-1}}{1+x^n} \, dx$$

where n and m are positive integers and 0 < m < n.

Problem 6 Let $M_{2\times 2}$ be the ring of real 2×2 matrices and $S \subset M_{2\times 2}$ the subring of matrices of the form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

- 1. Exhibit an isomorphism between S and \mathbb{C} .
- 2. Prove that

$$A = \begin{pmatrix} 0 & 3\\ -4 & 1 \end{pmatrix}$$

lies in a subring isomorphic to S.

3. Prove that there is an $X \in M_{2 \times 2}$ such that $X^4 + 13X = A$.

Problem 7 Let g be 2π -periodic, continuous on $[-\pi, \pi]$ and have Fourier series

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \,.$$

Let f be 2π -periodic and satisfy the differential equation

$$f''(x) + kf(x) = g(x)$$

where $k \neq n^2, n = 1, 2, 3, \ldots$ Find the Fourier series of f and prove that it converges everywhere.

Problem 8 Let $\mathbf{F}_2 = \{0, 1\}$ be the field with two elements. Let G be the group of invertible 2×2 matrices with entries in \mathbf{F}_2 . Show that G is isomorphic to S_3 , the group of permutations of three objects.

Problem 9 For a real 2×2 matrix

$$X = \begin{pmatrix} x & y \\ z & t \end{pmatrix},$$

let $||X|| = x^2 + y^2 + z^2 + t^2$, and define a metric by d(X, Y) = ||X - Y||. Let $\Sigma = \{X \mid \det(X) = 0\}$. Let

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}.$$

Find the minimum distance from A to Σ and exhibit an $S \in \Sigma$ that achieves this minimum.

Problem 10 Show that there is an $\varepsilon > 0$ such that if A is any real 2×2 matrix satisfying $|a_{ij}| \leq \varepsilon$ for all entries a_{ij} of A, then there is a real 2×2 matrix X such that $X^2 + X^t = A$, where X^t is the transpose of X. Is X unique? **Problem 11** Let f(z) be an analytic function defined for $|z| \leq 1$ and let

$$u(x,y) = \Re f(z), \quad z = x + iy.$$

Prove that

$$\int_C \frac{\partial u}{\partial y} \, dx - \frac{\partial u}{\partial x} \, dy = 0$$

where C is the unit circle, $x^2 + y^2 = 1$.

Problem 12 Prove that any group of order 6 is isomorphic to either \mathbb{Z}_6 or S_3 (the group of permutations of three objects).

Problem 13 Let $f(x) = \frac{1}{4} + x - x^2$. For any real number x, define a sequence (x_n) by $x_0 = x$ and $x_{n+1} = f(x_n)$. If the sequence converges, let x_{∞} denote the limit.

- For x = 0, show that the sequence is bounded and nondecreasing and find x_∞ = λ.
- 2. Find all $y \in \mathbb{R}$ such that $y_{\infty} = \lambda$.

Problem 14 Exhibit a set of 2×2 real matrices with the following property: A matrix A is similar to exactly one matrix in S provided A is a 2×2 invertible matrix of integers with all the roots of its characteristic polynomial on the unit circle.

Problem 15 Consider the differential equation $x'' + x' + x^3 = 0$ and the function $f(x, x') = (x + x')^2 + (x')^2 + x^4$.

- 1. Show that f decreases along trajectories of the differential equation.
- 2. Show that if x(t) is any solution, then (x(t), x'(t)) tends to (0, 0) as $t \to \infty$.

Problem 16 Suppose that A and B are real matrices such that $A^t = A$,

 $v^t A v \ge 0$

for all $v \in \mathbb{R}^n$ and

$$AB + BA = 0.$$

Show that AB = BA = 0 and give an example where neither A nor B is zero.

Problem 17 Let P_n be a sequence of real polynomials of degree $\leq D$, a fixed integer. Suppose that $P_n(x) \to 0$ pointwise for $0 \leq x \leq 1$. Prove that $P_n \to 0$ uniformly on [0, 1].

Problem 18 Suppose that f is analytic inside and on the unit circle |z| = 1and satisfies |f(z)| < 1 for |z| = 1. Show that the equation $f(z) = z^3$ has exactly three solutions (counting multiplicities) inside the unit circle.

Problem 19 Let X be a compact metric space and $f : X \to X$ an isometry. Show that f(X) = X.

Problem 20 Let R be a ring with multiplicative identity 1. Call $x \in R$ a unit if xy = yx = 1 for some $y \in R$. Let G(R) denote the set of units.

- 1. Prove G(R) is a multiplicative group.
- 2. Let R be the ring of complex numbers a+bi, where a and b are integers. Prove G(R) is isomorphic to \mathbb{Z}_4 (the additive group of integers modulo 4).