Preliminary Exam - Fall 1981

Problem 1 Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^4} \, dx \, .$$

Problem 2 Consider an autonomous system of differential equations

$$\frac{dx_i}{dt} = F_i(x_1, \dots, x_n),$$

where $F = (F_1, \ldots, F_n) : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 vector field.

1. Let U and V be two solutions on a < t < b. Assuming that

 $\langle DF(x)z, z \rangle \leqslant 0$

for all x, z in \mathbb{R}^n , show that $||U(t) - V(t)||^2$ is a decreasing function of t.

2. Let W(t) be a solution defined for t > 0. Assuming that

$$\langle DF(x)z, z \rangle \leqslant - \|z\|^2,$$

show that there exists $C \in \mathbb{R}^n$ such that

$$\lim_{t \to \infty} W(t) = C.$$

Problem 3 Let S_n be the group of all permutations of n objects and let G be a subgroup of S_n of order p^k , where p is a prime not dividing n. Show that G has a fixed point; that is, one of the objects is left fixed by every element of G.

Problem 4 Prove the following three statements about real $n \times n$ matrices.

1. If A is an orthogonal matrix whose eigenvalues are all different from -1, then I + A is nonsingular and $S = (I - A)(I + A)^{-1}$ is skew-symmetric.

- 2. If S is a skew-symmetric matrix, then $A = (I S)(I + S)^{-1}$ is an orthogonal matrix with no eigenvalue equal to -1.
- 3. The correspondence $A \leftrightarrow S$ from Parts 1 and 2 is one-to-one.

Problem 5 The Fibonacci numbers f_1, f_2, \ldots are defined recursively by $f_1 = 1$, $f_2 = 2$, and $f_{n+1} = f_n + f_{n-1}$ for $n \ge 2$. Show that

$$\lim_{n \to \infty} \frac{f_{n+1}}{f_n}$$

exists, and evaluate the limit. Note: See also Problem ??.

Problem 6 Let f and g be continuous functions on \mathbb{R} such that f(x+1) = f(x), g(x+1) = g(x), for all $x \in \mathbb{R}$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x)g(nx) \, dx = \int_0^1 f(x) \, dx \, \int_0^1 g(x) \, dx$$

Problem 7 Find a specific polynomial with rational coefficients having $\sqrt{2} + \sqrt[3]{3}$ as a root.

- **Problem 8** 1. How many zeros does the function $f(z) = 3z^{100} e^z$ have inside the unit circle (counting multiplicities)?
 - 2. Are the zeros distinct?

Problem 9 Let $M_{2\times 2}$ be the vector space of all real 2×2 matrices. Let

$$A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}$$

and define a linear transformation $L : M_{2\times 2} \to M_{2\times 2}$ by L(X) = AXB. Compute the trace and the determinant of L.

Problem 10 Let $A = (a_{ij})$ be an $n \times n$ matrix whose entries a_{ij} are real valued differentiable functions defined on \mathbb{R} . Assume that the determinant det(A) of A is everywhere positive. Let $B = (b_{ij})$ be the inverse matrix of A. Prove the formula

$$\frac{d}{dt}\log\left(\det(A)\right) = \sum_{i,j=1}^{n} \frac{da_{ij}}{dt} b_{ji}.$$

Problem 11 Consider the complex 3×3 matrix

$$A = \begin{pmatrix} a_0 & a_1 & a_2 \\ a_2 & a_0 & a_1 \\ a_1 & a_2 & a_0 \end{pmatrix},$$

where $a_0, a_1, a_2 \in \mathbb{C}$.

1. Show that $A = a_0 I_3 + a_1 E + a_2 E^2$, where

$$E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

- 2. Use Part 1 to find the complex eigenvalues of A.
- 3. Generalize Parts 1 and 2 to $n \times n$ matrices.

Problem 12 Let a, b be real constants and let

$$u(x,y) = \frac{a^2 + b^2 + x^2 - y^2}{(a-x)^2 + (b-y)^2}$$

Show that u is harmonic and find an entire function f(z) whose real part is u.

Correction: u cannot be the real part of an entire function. Why? Change u slightly and do the problem.

Problem 13 Let f be a real valued function on \mathbb{R}^n of class C^2 . A point $x \in \mathbb{R}^n$ is a critical point of f if all the partial derivatives of f vanish at x; a critical point is nondegenerate if the $n \times n$ matrix

$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)$$

is nonsingular.

Let x be a nondegenerate critical point of f. Prove that there is an open neighborhood of x which contains no other critical points (i.e., the nondegenerate critical points are isolated). **Problem 14** Let $V : \mathbb{R}^n \to \mathbb{R}$ be a C^1 function and consider the system of second order differential equations

$$x_i''(t) = f_i(x(t)), \quad 1 \le i \le n,$$

where

$$f_i = -\frac{\partial V}{\partial x_i}$$

Let $x(t) = (x_1(t), \ldots, x_n(t))$ be a solution of this system on a finite interval a < t < b.

1. Show that the function

$$H(t) = \frac{1}{2} \langle x'(t), x'(t) \rangle + V(x(t))$$

is constant for a < t < b.

2. Assuming that $V(x) \ge M > -\infty$ for all $x \in \mathbb{R}^n$, show that x(t), x'(t), and x''(t) are bounded on a < t < b, and then prove all three limits

$$\lim_{t \to b} x(t), \quad \lim_{t \to b} x'(t), \quad \lim_{t \to b} x''(t)$$

exist.

Problem 15 Let f be a holomorphic map of the unit disc $\mathbb{D} = \{z \mid |z| < 1\}$ into itself, which is not the identity map f(z) = z. Show that f can have, at most, one fixed point.

Problem 16 Let G be a group with three normal subgroups N_1, N_2, N_3 . Suppose $N_i \cap N_j = \{e\}$ and $N_i N_j = G$ for all i, j with $i \neq j$. Show that G is abelian and N_i is isomorphic to N_j for all i, j.

Problem 17 Let f be a continuous function on [0, 1]. Evaluate the following limits.

1.

$$\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx \, .$$

$$\lim_{n \to \infty} n \int_0^1 x^n f(x) \, dx \, .$$

Problem 18 Let A and B be two real $n \times n$ matrices. Suppose there is a complex invertible $n \times n$ matrix U such that $A = UBU^{-1}$. Show that there is a real invertible $n \times n$ matrix V such that $A = VBV^{-1}$. (In other words, if two real matrices are similar over \mathbb{C} , then they are similar over \mathbb{R} .)

Problem 19 Either prove or disprove (by a counterexample) each of the following statements:

1. Let $f : \mathbb{R} \to \mathbb{R}, g : \mathbb{R} \to \mathbb{R}$ be such that

$$\lim_{t \to a} g(t) = b \text{ and } \lim_{t \to b} f(t) = c.$$

Then

$$\lim_{t \to a} f\left(g(t)\right) = c$$

- 2. If $f : \mathbb{R} \to \mathbb{R}$ is continuous and U is an open set in \mathbb{R} , then f(U) is an open set in \mathbb{R} .
- 3. Let f be of class C^{∞} on the interval (-1, 1). Suppose that $|f^{(n)}(x)| \leq 1$ for all $n \geq 1$ and all x in the interval. Then f is real analytic; that is, it has a convergent power series expansion in a neighborhood of each point of the interval.

Problem 20 Let G be a group of order 10 which has a normal subgroup of order 2. Prove that G is abelian.

2.