Preliminary Exam - Fall 1982

Problem 1 Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous nowhere vanishing function, and consider the differential equation

$$\frac{dy}{dx} = f(y).$$

- 1. For each real number c, show that this equation has a unique, continuously differentiable solution y = y(x) on a neighborhood of 0 which satisfies the initial condition y(0) = c.
- 2. Deduce the conditions on f under which the solution y exists for all $x \in \mathbb{R}$, for every initial value c.

Problem 2 Consider the polynomial ring $R = \mathbb{Z}[x]$ and the ideal \mathfrak{I} of R generated by 7 and x - 3.

- 1. Show that for each $r \in R$, there is an integer α satisfying $0 \leq \alpha \leq 6$ such that $r \alpha \in \mathfrak{I}$.
- 2. Find α in the special case $r = x^{250} + 15x^{14} + x^2 + 5$.

Problem 3 Let

$$\cot(\pi z) = \sum_{n = -\infty}^{\infty} a_n z^n$$

be the Laurent expansion for $\cot(\pi z)$ on the annulus 1 < |z| < 2. Compute the a_n for n < 0.

Problem 4 Let M be an $n \times n$ matrix of real numbers. Prove or disprove: The dimension of the subspace of \mathbb{R}^n generated by the rows of M is equal to the dimension of the subspace of \mathbb{R}^n generated by the columns of M.

Problem 5 Let $\varphi_1, \varphi_2, \ldots, \varphi_n, \ldots$ be nonnegative continuous functions on [0, 1] such that the limit

$$\lim_{n \to \infty} \int_0^1 x^k \varphi_n(x) \, dx$$

exists for every k = 0, 1, ... Show that the limit

$$\lim_{n \to \infty} \int_0^1 f(x)\varphi_n(x) \, dx$$

exists for every continuous function f on [0, 1].

Problem 6 Let T be a linear transformation on a finite-dimensional \mathbb{C} -vector space V, and let f be a polynomial with coefficients in \mathbb{C} . If λ is an eigenvalue of T, show that $f(\lambda)$ is an eigenvalue of f(T). Is every eigenvalue of f(T) necessarily obtained in this way?

Problem 7 Evaluate

$$\int_{-\infty}^{\infty} \frac{\cos \pi x}{4x^2 - 1} \, dx \, .$$

Problem 8 Let

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix} \mid a, b \in \mathbb{R}, \ a > 0 \right\}$$
$$N = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{R} \right\}.$$

- 1. Show that N is a normal subgroup of G and prove that G/N is isomorphic to \mathbb{R} .
- 2. Find a normal subgroup N' of G satisfying $N \subset N' \subset G$ (where the inclusions are proper), or prove that there is no such subgroup.

Problem 9 Let f be a real valued continuous nonnegative function on [0, 1] such that

$$f(t)^2 \leqslant 1 + 2\int_0^t f(s) \, ds$$

for $t \in [0, 1]$. Show that $f(t) \leq 1 + t$ for $t \in [0, 1]$.

Problem 10 Let a and b be complex numbers whose real parts are negative or 0. Prove the inequality $|e^a - e^b| \leq |a - b|$.

Problem 11 1. Prove that there is no continuous map from the closed interval [0, 1] onto the open interval (0, 1).

- 2. Find a continuous surjective map from the open interval (0,1) onto the closed interval [0,1].
- 3. Prove that no map in Part 2 can be bijective.

Problem 12 Let A and B be complex $n \times n$ matrices having the same rank. Suppose that $A^2 = A$ and $B^2 = B$. Prove that A and B are similar.

Problem 13 Let f_1, f_2, \ldots be continuous functions on [0, 1] satisfying $f_1 \ge f_2 \ge \cdots$ and such that $\lim_{n\to\infty} f_n(x) = 0$ for each x. Must the sequence $\{f_n\}$ converge to 0 uniformly on [0, 1]?

Problem 14 Let A be an $n \times n$ complex matrix, and let B be the Hermitian transpose of A (i.e., $b_{ij} = \overline{a}_{ji}$). Suppose that A and B commute with each other. Consider the linear transformations α and β on \mathbb{C}^n defined by A and B. Prove that α and β have the same image and the same kernel.

Problem 15 Let A be a subgroup of an abelian group B. Assume that A is a direct summand of B, i.e., there exists a subgroup X of B such that $A \cap X = 0$ and such that B = X + A. Suppose that C is a subgroup of B and satisfying $A \subset C \subset B$. Is A necessarily a direct summand of C?

Problem 16 Find all pairs of C^{∞} functions x(t) and y(t) on \mathbb{R} satisfying

$$x'(t) = 2x(t) - y(t), \qquad y'(t) = x(t).$$

Problem 17 Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin^3 x}{x^3} \, dx \, dx$$

Problem 18 Let K be a continuous function on the unit square $0 \le x, y \le 1$ satisfying |K(x,y)| < 1 for all x and y. Show that there is a continuous function f(x) on [0,1] such that we have

$$f(x) + \int_0^1 K(x, y) f(y) \, dy = e^{x^2}.$$

Can there be more than one such function f?

Problem 19 Let a and b be nonzero complex numbers $andf(z) = az + bz^{-1}$. Determine the image under f of the unit circle $\{z \mid |z| = 1\}$. **Problem 20** Let G be the abelian group given by generators x, y, and z and by the three relations:

$$2x + 4y + 6z = 0, 8x + 4z = 4y, 6x = 8y + 2z.$$

Write G as a product of cyclic groups. How many elements of G have order 2?