Preliminary Exam - Fall 1983

Problem 1 Evaluate

$$\int_0^\infty (\operatorname{sech} x)^2 \cos \lambda x \, dx$$

where λ is a real constant and

$$\operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$

Problem 2 Let $M_{n \times n}(\mathbf{F})$ be the ring of $n \times n$ matrices over a field \mathbf{F} . For $n \ge 1$ does there exist a ring homomorphism from $M_{(n+1)\times(n+1)}(\mathbf{F})$ onto $M_{n \times n}(\mathbf{F})$?

Problem 3 Let $f : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be a function which is continuously differentiable and whose partial derivatives are uniformly bounded:

$$\left|\frac{\partial f}{\partial x_i}(x_1,\ldots,x_n)\right| \leqslant M$$

for all $(x_1, \ldots, x_n) \neq (0, \ldots, 0)$. Show that if $n \ge 2$, then f can be extended to a continuous function defined on all of \mathbb{R}^n . Show that this is false if n = 1 by giving a counterexample.

Problem 4 Prove or disprove (by giving a counterexample), the following assertion: Every infinite sequence x_1, x_2, \ldots of real numbers has either a nondecreasing subsequence or a nonincreasing subsequence.

Problem 5 Let A be the $n \times n$ matrix which has zeros on the main diagonal and ones everywhere else. Find the eigenvalues and eigenspaces of A and compute det(A).

Problem 6 Consider the polynomial

$$p(z) = z^5 + z^3 + 5z^2 + 2z^3 + 5z^2 + 5z^3 + 5z^2 + 5z^3 + 5z^3 + 5z^2 + 5z^3 + 5z$$

How many zeros (counting multiplicities) does p have in the annular region 1 < |z| < 2?

Problem 7 Let G be a finite group and suppose that $G \times G$ has exactly four normal subgroups. Show that G is simple and nonabelian.

Problem 8 Let A be a linear transformation on \mathbb{R}^3 whose matrix (relative to the usual basis for \mathbb{R}^3) is both symmetric and orthogonal. Prove that A is either plus or minus the identity, or a rotation by 180° about some axis in \mathbb{R}^3 , or a reflection about some two-dimensional subspace of \mathbb{R}^3 .

Problem 9 For which real values of p does the differential equation

$$y'' + 2py' + y = 3$$

admit solutions y = f(x) with infinitely many critical points?

Problem 10 Let $f : [0, \infty) \to \mathbb{R}$ be a uniformly continuous function with the property that

$$\lim_{b \to \infty} \int_0^b f(x) \, dx$$

exists (as a finite limit). Show that

$$\lim_{x \to \infty} f(x) = 0.$$

Problem 11 Prove or supply a counterexample: If f and g are C^1 real valued functions on (0, 1), if

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0,$$

if g and g' never vanish, and if

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = c,$$

then

$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = c.$$

Problem 12 Let r_1, r_2, \ldots, r_n be distinct complex numbers. Show that a rational function of the form

$$f(z) = \frac{b_0 + b_1 z + \dots + b_{n-2} z^{n-2} + b_{n-1} z^{n-1}}{(z - r_1)(z - r_2) \cdots (z - r_n)}$$

can be written as a sum

$$f(z) = \frac{A_1}{z - r_1} + \frac{A_2}{z - r_2} + \dots + \frac{A_n}{z - r_n}$$

for suitable constants A_1, \ldots, A_n .

Problem 13 1. Let u(t) be a real valued differentiable function of a real variable t which satisfies an inequality of the form

$$u'(t) \leqslant au(t), \quad t \ge 0, \quad u(0) \leqslant b,$$

where a and b are positive constants. Starting from first principles, derive an upper bound for u(t) for t > 0.

2. Let $x(t) = (x_1(t), x_2(t), \dots, x_n(t))$ be a differentiable function from \mathbb{R} to \mathbb{R}^n which satisfies a differential equation of the form

$$x'(t) = f(x(t)),$$

where $f : \mathbb{R}^n \to \mathbb{R}^n$ is a continuous function. Assuming that f satisfies the condition

$$\langle f(y), y \rangle \leqslant \|y\|^2, \quad y \in \mathbb{R}^n$$

derive an inequality showing that the norm ||x(t)|| grows, at most, exponentially.

Problem 14 Let V be a finite-dimensional complex vector space and let A and B be linear operators on V such that AB = BA. Prove that if A and B can each be diagonalized, then there is a basis for V which simultaneously diagonalizes A and B.

- **Problem 15** 1. Let f be a complex function which is analytic on an open set containing the disc $|z| \leq 1$, and which is real valued on the unit circle. Prove that f is constant.
 - 2. Find a nonconstant function which is analytic at every point of the complex plane except for a single point on the unit circle |z| = 1, and which is real valued at every other point of the unit circle.

Problem 16 Let $F(t) = (f_{ij}(t))$ be an $n \times n$ matrix of continuously differentiable functions $f_{ij} : \mathbb{R} \to \mathbb{R}$, and let

$$u(t) = \operatorname{tr}\left(F(t)^3\right).$$

Show that u is differentiable and

$$u'(t) = 3\operatorname{tr}\left(F(t)^2 F'(t)\right).$$

Problem 17 Prove that every finite integral domain is a field.

Problem 18 Let $f, g : \mathbb{R} \to \mathbb{R}$ be smooth functions with f(0) = 0 and $f'(0) \neq 0$. Consider the equation $f(x) = tg(x), t \in \mathbb{R}$.

- 1. Show that in a suitably small interval $|t| < \delta$, there is a unique continuous function x(t) which solves the equation and satisfies x(0) = 0.
- 2. Derive the first order Taylor expansion of x(t) about t = 0.

Problem 19 Prove that if p is a prime number, then the polynomial

$$f(x) = x^{p-1} + x^{p-2} + \dots + 1$$

is irreducible in $\mathbb{Q}[x]$.

Problem 20 Let m and n be positive integers, with m < n. Let $M_{m \times n}$ be the space of linear transformations of \mathbb{R}^m into \mathbb{R}^n (considered as $n \times m$ matrices) and let L be the set of transformations in $M_{m \times n}$ which have rank m.

- 1. Show that L is an open subset of $M_{m \times n}$.
- 2. Show that there is a continuous function $T : L \to M_{m \times n}$ such that $T(A)A = I_m$ for all A, where I_m is the identity on \mathbb{R}^m .