Preliminary Exam - Fall 1986

Problem 1 The Arzelà–Ascoli Theorem asserts that the sequence $\{f_n\}$ of continuous real valued functions on a metric space Ω is precompact (i.e., has a uniformly convergent subsequence) if

- (i) Ω is compact,
- (*ii*) $\sup ||f_n|| < \infty$ (where $||f_n|| = \sup\{|f_n(x)| \mid x \in \Omega\}$),
- (iii) the sequence is equicontinuous.

Give examples of sequences which are not precompact such that: (i) and (ii) hold but (iii) fails; (i) and (iii) hold but (ii) fails; (ii) and (iii) hold but (i) fails. Take Ω to be a subset of the real line. Sketch the graph of a typical member of the sequence in each case.

Problem 2 Let the points a, b, and c lie on the unit circle of the complex plane and satisfy a + b + c = 0. Prove that a, b, and c form the vertices of an equilateral triangle.

Problem 3 Evaluate

$$\iint_{\mathcal{R}} (x^3 - 3xy^2) \, dx dy \, ,$$

where

$$\mathcal{R} = \{ (x, y) \in \mathbb{R}^2 \mid (x+1)^2 + y^2 \leqslant 9, \ (x-1)^2 + y^2 \geqslant 1 \}.$$

Problem 4 Show that the polynomial $p(z) = z^5 - 6z + 3$ has five distinct complex roots, of which exactly three (and not five) are real.

Problem 5 Let $M_{2\times 2}$ denote the vector space of complex 2×2 matrices. Let

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and let the linear transformation $T: M_{2\times 2} \to M_{2\times 2}$ be defined by T(X) = XA - AX. Find the Jordan Canonical Form for T.

Problem 6 Prove the following theorem, or find a counterexample: If p and q are continuous real valued functions on \mathbb{R} such that $|q(x)| \leq |p(x)|$ for all x, and if every solution f of the differential equation

$$f' + qf = 0$$

satisfies $\lim_{x \to +\infty} f(x) = 0$, then every solution f of the differential equation

$$f' + pf = 0$$

satisfies $\lim_{x \to +\infty} f(x) = 0.$

Problem 7 Let \mathbf{F} be a field containing \mathbb{Q} such that $[\mathbf{F} : \mathbb{Q}] = 2$. Prove that there exists a unique integer m such that m has no multiple prime factors and \mathbf{F} is isomorphic to $\mathbb{Q}(\sqrt{m})$.

Problem 8 Let f be a continuous real valued function on [0,1] such that, for each $x_0 \in [0,1)$,

$$\limsup_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \ge 0.$$

Prove that f is nondecreasing.

Problem 9 Evaluate

$$\int_0^\infty \frac{\log x}{(x^2+1)(x^2+4)} \, dx \, .$$

Problem 10 For f a real valued function on the real line, define the function $\triangle f$ by $\triangle f(x) = f(x+1) - f(x)$. For $n \ge 2$, define $\triangle^n f$ recursively by $\triangle^n f = \triangle(\triangle^{n-1}f)$. Prove that $\triangle^n f = 0$ if and only if f has the form $f(x) = a_0(x) + a_1(x)x + \cdots + a_{n-1}(x)x^{n-1}$ where $a_0, a_1, \ldots, a_{n-1}$ are periodic functions of period 1.

Problem 11 Let A be an $m \times n$ matrix with entries in a field \mathbf{F} . Define the row rank and the column rank of A and show from first principles that they are equal.

Problem 12 Let $\{U_1, U_2, \ldots\}$ be a cover of \mathbb{R}^n by open sets. Prove that there is a cover $\{V_1, V_2, \ldots\}$ such that

- 1. $V_j \subset U_j$ for each j;
- 2. each compact subset of \mathbb{R}^n is disjoint from all but finitely many of the V_j .

Problem 13 Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by:

$$f(x,y) = \begin{cases} x^{4/3} \sin(y/x) & if \quad x \neq 0\\ 0 & if \quad x = 0 \end{cases}$$

Determine all points at which f is differentiable.

Problem 14 Let a and b be real numbers. Prove that there are two orthogonal unit vectors u and v in \mathbb{R}^3 such that $u = (u_1, u_2, a)$ and $v = (v_1, v_2, b)$ if and only if $a^2 + b^2 \leq 1$.

Problem 15 Prove that if p is a prime number (> 0) then the polynomial

$$f(x) = x^{p-1} + x^{p-2} + \dots + 1$$

is irreducible in $\mathbb{Q}[x]$.

Problem 16 Discuss the solvability of the differential equation

$$(e^x \sin y)(y')^3 + (e^x \cos y)y' + e^y \tan x = 0$$

with the initial condition y(0) = 0. Does a solution exist in some interval about 0? If so, is it unique?

Problem 17 Let G be a subgroup of S_5 , the group of all permutations of five objects Prove that if G contains a 5-cycle and a 2-cycle, then $G = S_5$.

Problem 18 Evaluate

$$\frac{1}{2\pi i} \int_{|z|=1} \frac{z^{11}}{12z^{12} - 4z^9 + 2z^6 - 4z^3 + 1} \, dz$$

where the direction of integration is counterclockwise.

Problem 19 Prove that if six people are riding together in an Evans Hall elevator, there is either a three-person subset of mutual friends (each knows the other two) or a three-person subset of mutual strangers (each knows neither of the other two). **Problem 20** Let f be a real valued continuous function on $[0,\infty)$ such that

$$\lim_{x \to \infty} \left(f(x) + \int_0^x f(t) \, dt \right)$$

exists. Prove that

$$\lim_{x \to \infty} f(x) = 0.$$