Preliminary Exam - Fall 1987

Problem 1 Prove that $(\cos \theta)^p \leq \cos(p \theta)$ for $0 \leq \theta \leq \pi/2$ and 0 .

Problem 2 Suppose that $\{f_n\}$ is a sequence of nondecreasing functions which map the unit interval into itself. Suppose that

$$\lim_{n \to \infty} f_n(x) = f(x)$$

pointwise and that f is a continuous function. Prove that $f_n(x) \to f(x)$ uniformly as $n \to \infty$, $0 \leq x \leq 1$. Note that the functions f_n are not necessarily continuous.

Problem 3 Show that the following limit exists and is finite:

$$\lim_{t \to 0^+} \left(\int_0^1 \frac{dx}{(x^4 + t^4)^{1/4}} + \log t \right).$$

Problem 4 Let u and v be two real valued C^1 functions on \mathbb{R}^2 such that the gradient ∇u is never 0, and such that, at each point, ∇v and ∇u are linearly dependent vectors. Given $p_0 = (x_0, y_0) \in \mathbb{R}^2$, show that there is a C^1 function F of one variable such that v(x, y) = F(u(x, y)) in some neighborhood of p_0 .

Problem 5 Calculate A^{100} and A^{-7} , where

$$A = \begin{pmatrix} 3/2 & 1/2 \\ -1/2 & 1/2 \end{pmatrix}.$$

Problem 6 Let G and H be finite groups of relatively prime order. Show that $\operatorname{Aut}(G \times H)$, the group of automorphisms of $G \times H$, is isomorphic to the direct product of $\operatorname{Aut}(G)$ and $\operatorname{Aut}(H)$.

Problem 7 Let A and B be real $n \times n$ symmetric matrices with B positive definite. Consider the function defined for $x \neq 0$ by

$$G(x) = \frac{\langle Ax, x \rangle}{\langle Bx, x \rangle}.$$

- 1. Show that G attains its maximum value.
- 2. Show that any maximum point U for G is an eigenvector for a certain matrix related to A and B and show which matrix.

Problem 8 Let R be the set of 2×2 matrices of the form

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

where a, b are elements of a given field \mathbf{F} . Show that with the usual matrix operations, R is a commutative ring with identity. For which of the following fields \mathbf{F} is R a field: $F = \mathbb{Q}$, \mathbb{C} , \mathbb{Z}_5 , \mathbb{Z}_7 ?

Problem 9 Evaluate the integral

$$I = \int_0^{2\pi} \frac{\cos^2 3\theta}{5 - 4\cos 2\theta} \, d\theta \, .$$

Problem 10 If f(z) is analytic in the open disc |z| < 1, and $|f(z)| \le 1/(1-|z|)$, show that

$$|a_n| = \left|\frac{f^{(n)}(0)}{n!}\right| \le (n+1)\left(1+\frac{1}{n}\right)^n < e(n+1).$$

Problem 11 Let V be a finite-dimensional vector space and $T:V \to V$ a diagonalizable linear transformation. Let $W \subset V$ be a linear subspace which is mapped into itself by T. Show that the restriction of T to W is diagonalizable.

Problem 12 Given two real $n \times n$ matrices A and B, suppose that there is a nonsingular complex matrix C such that $CAC^{-1} = B$. Show that there exists a real nonsingular $n \times n$ matrix C with this property.

Problem 13 Let A be the group of rational numbers under addition, and let M be the group of positive rational numbers under multiplication. Determine all homomorphisms $\varphi : A \to M$.

Problem 14 Show that $M_{n \times n}(\mathbf{F})$, the ring of all $n \times n$ matrices over the field \mathbf{F} , has no proper two sided ideals.

Problem 15 Let f(z) be analytic for $z \neq 0$, and suppose that f(1/z) = f(z). Suppose also that f(z) is real for all z on the unit circle |z| = 1. Prove that f(z) is real for all real $z \neq 0$.

Problem 16 How many zeros (counting multiplicities) does the polynomial

$$2z^5 - 6z^3 + z + 1$$

have in the annular region $1 \leq |z| \leq 2$?

Problem 17 Let u be a positive harmonic function on \mathbb{R}^2 ; that is,

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Show that u is constant.

Problem 18 Find a curve C in \mathbb{R}^2 , passing through the point (3,2), with the following property: Let $L(x_0, y_0)$ be the segment of the tangent line to C at (x_0, y_0) which lies in the first quadrant. Then each point (x_0, y_0) of C is the midpoint of $L(x_0, y_0)$.

../Fig/Pr/Fa87-18.ps not found

Problem 19 Define a sequence of positive numbers as follows. Let $x_0 > 0$ be any positive number, and let $x_{n+1} = (1 + x_n)^{-1}$. Prove that this sequence converges, and find its limit.

Problem 20 Let S be the set of all real C^1 functions f on [0, 1] such that f(0) = 0 and

$$\int_0^1 f'(x)^2 \, dx \leqslant 1.$$

Define

$$J(f) = \int_0^1 f(x) \, dx \, .$$

Show that the function J is bounded on S, and compute its supremum. Is there a function $f_0 \in S$ at which J attains its maximum value? If so, what is f_0 ?