Preliminary Exam - Fall 1988

Problem 1 Let R be a finite ring. Prove that there are positive integers m and n with m > n such that $x^m = x^n$ for every x in R.

Problem 2 Determine the group $Aut(\mathbb{C})$ of all one-to-one analytic maps of \mathbb{C} onto \mathbb{C} .

Problem 3 Let the real valued functions f_1, \ldots, f_{n+1} on \mathbb{R} satisfy the system of differential equations

$$f'_{k+1} + f'_k = (k+1)f_{k+1} - kf_k, \quad k = 1, \dots, n$$
$$f'_{n+1} = -(n+1)f_{n+1}.$$

Prove that for each k,

$$\lim_{t \to \infty} f_k(t) = 0.$$

Problem 4 Find the Jordan Canonical Form of the matrix

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 1 & 1
\end{pmatrix}$$

Problem 5 Let f be a continuous, strictly increasing function from $[0, \infty)$ onto $[0, \infty)$ and let $g = f^{-1}$. Prove that

$$\int_0^a f(x) \, dx + \int_0^b g(y) \, dy \ge ab$$

for all positive numbers a and b, and determine the condition for equality.

Problem 6 Let f be a function from [0,1] into itself whose graph

$$G_f = \{ (x, f(x)) \mid x \in [0, 1] \}$$

is a closed subset of the unit square. Prove that f is continuous. Note: See also Problem ??. **Problem 7** Find all abelian groups of order 8, up to isomorphism. Then identify which type occurs in each of

- 1. $(\mathbb{Z}_{15})^*$,
- 2. $(\mathbb{Z}_{17})^*/(\pm 1)$,
- 3. the roots of $z^8 1$ in $\mathbb C$,
- 4. \mathbf{F}_{8}^{+} ,
- 5. $(\mathbb{Z}_{16})^*$.

 \mathbf{F}_8 is the field of eight elements, and \mathbf{F}_8^+ is its underlying additive group; R^* is the group of invertible elements in the ring R, under multiplication.

Problem 8 Do the functions $f(z) = e^z + z$ and $g(z) = ze^z + 1$ have the same number of zeros in the strip $-\frac{\pi}{2} < \Im z < \frac{\pi}{2}$?

Problem 9 Let A and B be real symmetric $n \times n$ matrices. Assume that the eigenvalues of A all lie in the interval $[a_1, a_2]$ and those of B all lie in the interval $[b_1, b_2]$. Prove that the eigenvalues of A + B all lie in the interval $[a_1 + b_1, a_2 + b_2]$.

Problem 10 Find (up to isomorphism) all groups of order 2p, where p is a prime $(p \ge 2)$.

Problem 11 Let f be an analytic function on a disc D whose center is the point z_0 . Assume that $|f'(z) - f'(z_0)| < |f'(z_0)|$ on D. Prove that f is one-to-one on D.

Problem 12 Let n be a positive integer and let f be a polynomial in $\mathbb{R}[x]$ of degree n. Prove that there are real numbers a_0, a_1, \ldots, a_n , not all equal to zero, such that the polynomial

$$\sum_{i=0}^{n} a_i x^{2^i}$$

is divisible by f.

Problem 13 Let A be a complex $n \times n$ matrix, and let C(A) be the commutant of A; that is, the set of complex $n \times n$ matrices B such that AB = BA. (It is obviously a subspace of $M_{n \times n}$, the vector space of all complex $n \times n$ matrices.) Prove that dim $C(A) \ge n$.

Problem 14 Let the group G be generated by two elements, a and b, both of order 2. Prove that G has a subgroup of index 2.

Problem 15 Prove that a real valued C^3 function f on \mathbb{R}^2 whose Laplacian,

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \,,$$

is everywhere positive cannot have a local maximum.

Problem 16 Let n be a positive integer. Prove that the polynomial

$$f(x) = \sum_{i=0}^{n} \frac{x^{i}}{i!} = 1 + x + \frac{x^{2}}{2} + \dots + \frac{x^{n}}{n!}$$

in $\mathbb{R}[x]$ has n distinct complex zeros, z_1, z_2, \ldots, z_n , and that they satisfy

$$\sum_{i=1}^{n} z_i^{-j} = 0 \quad for \quad 2 \leqslant j \leqslant n.$$

Problem 17 Prove that

$$\int_0^\infty \frac{x}{e^x - e^{-x}} \, dx = \frac{\pi^2}{8} \cdot$$

Problem 18 Let g be a continuous real valued function on [0,1]. Prove that there exists a continuous real valued function f on [0,1] satisfying the equation

$$f(x) - \int_0^x f(x-t)e^{-t^2} dt = g(x).$$