Preliminary Exam - Fall 1989

Problem 1 Let A be a finite abelian group, and m the maximum of the orders of the elements of A. Put $S = \{a \in A \mid |a| = m\}$. Prove that A is generated by S.

Problem 2 Let $f : [0,1] \to \mathbb{R}$ be a real valued continuously differentiable function with f(0) = 0. Suppose also that there is a constant M > 0 such that, for $0 \le x \le 1$,

$$0 \leqslant f'(x) \leqslant Mf(x).$$

Prove that f(x) = 0 for $0 \leq x \leq 1$.

Problem 3 Let A be a real, upper-triangular, $n \times n$ matrix that commutes with its transpose. Prove that A is diagonal.

Problem 4 Let f(z) be analytic for |z| < 1 and suppose that

$$|f(z)| \leqslant \frac{1}{1-|z|}.$$

Show that $|f'(0)| \leq 4$.

Problem 5 Let G be a group, G' its commutator subgroup, and N a normal subgroup of G. Suppose that N is cyclic. Prove that gn = ng for all $g \in G'$ and all $n \in N$.

Problem 6 Let $X \subset \mathbb{R}^n$ be a closed set and r a fixed positive real number. Let $Y = \{y \in \mathbb{R}^n \mid |x - y| = r \text{ for some } x \in X\}$. Show that Y is closed.

Problem 7 Let A and B be diagonalizable linear transformations of \mathbb{R}^n into itself such that AB = BA. Let E be an eigenspace of A. Prove that the restriction of B to E is diagonalizable.

Problem 8 Evaluate the integral

$$I = \int_0^\infty \frac{\log x}{1+x^2} \, dx \, .$$

Problem 9 Let \mathbf{F} be a field, $\mathbf{F}[x]$ the polynomial ring in one variable over \mathbf{F} , and R a subring of $\mathbf{F}[x]$ with $\mathbf{F} \subset R$. Prove that there exists a finite set $\{f_1, f_2, \ldots, f_n\}$ of elements of $\mathbf{F}[x]$ such that $R = \mathbf{F}[f_1, f_2, \ldots, f_n]$.

Problem 10 Let α be a number in (0,1). Prove that any sequence (x_n) of real numbers satisfying the recurrence relation

$$x_{n+1} = \alpha x_n + (1 - \alpha) x_{n-1}$$

has a limit, and find an expression for the limit in terms of α , x_0 and x_1 .

Problem 11 Let φ be Euler's totient function; so if n is a positive integer, then $\varphi(n)$ is the number of integers m for which $1 \leq m \leq n$ and $\gcd\{n, m\} =$ 1. Let a and k be two integers, with a > 1, k > 0. Prove that k divides $\varphi(a^k - 1)$.

Problem 12 Let f(z) be analytic in the annulus $\Omega = \{1 < |z| < 2\}$. Assume that f has no zeros in Ω . Show that there exists an integer n and an analytic function g in Ω such that, for all $z \in \Omega$, $f(z) = z^n e^{g(z)}$.

Problem 13 Let A be an $n \times n$ real matrix, A^t its transpose. Show that A^tA and A^t have the same range. In other words, given y, show that the equation $y = A^tAx$ has a solution x if and only if the equation $y = A^tz$ has a solution z.

Problem 14 Let $X \subset \mathbb{R}^n$ be compact and let $f : X \to \mathbb{R}$ be continuous. Given $\varepsilon > 0$, show there is an M such that for all $x, y \in X$,

$$|f(x) - f(y)| \leq M|x - y| + \varepsilon.$$

Problem 15 Let G_n be the free group on *n* generators. Show that G_2 and G_3 are not isomorphic.

Problem 16 Prove that the polynomial

$$p(z) = z^{47} - z^{23} + 2z^{11} - z^5 + 4z^2 + 1$$

has at least one root in the disc |z| < 1.

Problem 17 Let V be a vector space of finite-dimension n over a field of characteristic 0. Prove that V is not the union of finitely many subspaces of dimension n - 1.

Problem 18 Let the function f from [0, 1] to [0, 1] have the following properties:

- f is of class C^1 ;
- f(0) = f(1) = 0;
- f' is nonincreasing (i.e., f is concave).

Prove that the arclength of the graph of f does not exceed 3.