Preliminary Exam - Fall 1991

Problem 1 Prove that every finite group of order at least 3 has a nontrivial automorphism.

Problem 2 Let f be a continuous function from \mathbb{R} to \mathbb{R} such that $|f(x) - f(y)| \ge |x - y|$ for all x and y. Prove that the range of f is all of \mathbb{R} . Note: See also Problem ??.

Problem 3 Evaluate the integral

$$I = \frac{1}{2\pi i} \int_C \frac{z^{n-1}}{3z^n - 1} \, dz,$$

where n is a positive integer, and C is the circle |z| = 1, with counterclockwise orientation.

- **Problem 4** 1. Prove that any real $n \times n$ matrix M can be written as M = A + S + cI, where A is antisymmetric, S is symmetric, C is a scalar, D is the identity matrix, and C tr C is a scalar C constant.
 - 2. Prove that with the above notation,

$$\operatorname{tr}(M^2) = \operatorname{tr}(A^2) + \operatorname{tr}(S^2) + \frac{1}{n}(\operatorname{tr} M)^2.$$

Problem 5 Let f be an infinitely differentiable function from \mathbb{R} to \mathbb{R} . Suppose that, for some positive integer n,

$$f(1) = f(0) = f'(0) = f''(0) = \dots = f^{(n)}(0) = 0.$$

Prove that $f^{(n+1)}(x) = 0$ for some x in (0,1).

Problem 6 Let the function f be analytic in the disc |z| < 1 of the complex plane. Assume that there is a positive constant M such that

$$\int_0^{2\pi} |f'(re^{i\theta})| d\theta \leqslant M, \qquad (0 \leqslant r < 1).$$

Prove that

$$\int_{[0,1)} |f(x)| \, dx < \infty.$$

Problem 7 Consider the vector differential equation

$$\frac{dx(t)}{dt} = A(t)x(t)$$

where A is a smooth $n \times n$ function on \mathbb{R} . Assume A has the property that $\langle A(t)y,y \rangle \leqslant c\|y\|^2$ for all y in \mathbb{R}^n and all t, where c is a fixed real number. Prove that any solution x(t) of the equation satisfies $\|x(t)\| \leqslant e^{ct}\|x(0)\|$ for all t > 0.

Problem 8 Let a_1, a_2, a_3, \ldots be positive numbers.

- 1. Prove that $\sum a_n < \infty$ implies $\sum \sqrt{a_n a_{n+1}} < \infty$.
- 2. Prove that the converse of the above statement is false.

Problem 9 Let G be a group of order 2p, where p is an odd prime. Assume that G has a normal subgroup of order 2. Prove that G is cyclic.

Problem 10 Let \mathbf{F} be a finite field of order p. Compute the order of $SL_3(\mathbf{F})$, the group of 3×3 matrices over \mathbf{F} of determinant 1.

Problem 11 Let X and Y be metric spaces and f a continuous map of X into Y. Let K_1, K_2, \ldots be nonempty compact subsets of X such that $K_{n+1} \subset K_n$ for all n, and let $K = \bigcap K_n$. Prove that $f(K) = \bigcap f(K_n)$.

Problem 12 Let p be a nonconstant complex polynomial whose zeros are all in the half-plane $\Im z > 0$.

- 1. Prove that $\Im(p'/p) > 0$ on the real axis.
- 2. Find a relation between $\deg p$ and

$$\int_{-\infty}^{\infty} \Im \frac{p'(x)}{p(x)} \, dx \, .$$

Problem 13 Let $A = (a_{ij})_{i,j=1}^n$ be a real $n \times n$ matrix with nonnegative entries such that

$$\sum_{i=1}^{n} a_{ij} = 1 \qquad (1 \leqslant i \leqslant n).$$

Prove that no eigenvalue of A has absolute value greater than 1.

Problem 14 Let \mathcal{B} denote the unit ball of \mathbb{R}^3 , $\mathcal{B} = \{r \in \mathbb{R}^3 \mid ||r|| \leq 1\}$. Let $J = (J_1, J_2, J_3)$ be a smooth vector field on \mathbb{R}^3 that vanishes outside of \mathcal{B} and satisfies $\nabla \cdot \vec{J} = 0$.

1. For f a smooth, scalar-valued function defined on a neighborhood of \mathcal{B} , prove that

$$\int_{\mathcal{B}} (\nabla f) \cdot \vec{J} \, dx dy dz = 0.$$

2. Prove that

$$\int_{\mathcal{B}} J_1 \, dx dy dz = 0.$$

Problem 15 Let \Im be the ideal in the ring $\mathbb{Z}[x]$ generated by x-7 and 15. Prove that the quotient ring $\mathbb{Z}[x]/\Im$ is isomorphic to \mathbb{Z}_{15} .

Problem 16 Let $M_{n\times n}$ be the space of real $n\times n$ matrices. Regard it as a metric space with the distance function

$$d(A, B) = \sum_{i,j=1}^{n} |a_{ij} - b_{ij}| \qquad (A = (a_{ij}), B = (b_{ij})).$$

Prove that the set of nilpotent matrices in $M_{n\times n}$ is a closed set.

Problem 17 Let f be a C^1 function from the interval (-1,1) into \mathbb{R}^2 such that f(0) = 0 and $f'(0) \neq 0$. Prove that there is a number ε in (0,1) such that ||f(t)|| is an increasing function of t on $(0,\varepsilon)$.

Problem 18 Let the function f be analytic in the entire complex plane and satisfy the inequality $|f(z)| \leq |\Re z|^{-1/2}$ off the imaginary axis. Prove that f is constant.