Preliminary Exam - Fall 1992

Problem 1 Are the matrices
$$A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ similar?

similar

Problem 2 Let \mathfrak{I} denote the ideal in $\mathbb{Z}[x]$, the ring of polynomials with coefficients in \mathbb{Z} , generated by $x^3 + x + 1$ and 5. Is \mathfrak{I} a prime ideal?

1. How many roots does the polynomial defined by p(z) =Problem 3 $2z^5 + 4z^2 + 1$ have in the disc |z| < 1?

2. How many roots does the same polynomial have on the real axis?

Problem 4 Let the real valued function y(t) $(0 \le t < \infty)$ solve the initial value problem

y'' = -|y|, y(0) = 1, y'(0) = 0.

Prove that there is exactly one t > 0 such that y(t) = 0.

Problem 5 Let G be a group and H and K subgroups such that H has a finite index in G. Prove that $K \cap H$ has a finite index in K.

Problem 6 Let (X_1, d_1) and (X_2, d_2) be metric spaces and $f : X_1 \to X_2$ a continuous surjective map such that $d_1(p,q) \leq d_2(f(p), f(q))$ for every pair of points p, q in X_1 .

- 1. If X_1 is complete, must X_2 be complete? Give a proof or a counterexample.
- 2. If X_2 is complete, must X_1 be complete? Give a proof or a counterexample.

Problem 7 Evaluate

$$\int_C \frac{e^z}{z(2z+1)^2} \, dz,$$

where C is the unit circle with counterclockwise orientation.

Problem 8 Let \mathbf{F} be a field, V a finite-dimensional vector space over \mathbf{F} , and T a linear transformation of V into V whose minimum polynomial, μ , is irreducible over \mathbf{F} .

- 1. Let v be a nonzero vector in V and let V_1 be the subspace spanned by v and its images under the positive powers of T. Prove that dim $V_1 = \deg \mu$.
- 2. Prove that $\deg \mu$ divides $\dim V$.

Problem 9 Let the function f be analytic in the region |z| > 1 of the complex plane. Prove that if f is real valued on the interval $(1, \infty)$ of the real axis, then f is also real valued on the interval $(-\infty, -1)$.

Problem 10 How many Sylow 2-subgroups does the dihedral group D_n of order 2n have, when n is odd?

Problem 11 Let V be a finite-dimensional vector space over a field \mathbf{F} , and let $B: V \times V \to \mathbf{F}$ be a bilinear map (not necessarily symmetric). Define the subspaces V_1 and V_2 by

$$V_{1} = \{ x \in V : B(x, y) = 0 \text{ for all } y \text{ in } V \}$$
$$V_{2} = \{ y \in V : B(x, y) = 0 \text{ for all } x \text{ in } V \}.$$

Prove that $\dim V_1 = \dim V_2$.

Problem 12 Let $\{f_n\}$ be a sequence of real valued C^1 functions on [0,1] such that, for all n,

$$|f'_n(x)| \le \frac{1}{\sqrt{x}} \quad (0 < x \le 1),$$

 $\int_0^1 f_n(x) \, dx = 0.$

Prove that the sequence has a subsequence that converges uniformly on [0, 1].

Problem 13 Evaluate

$$\int_{-\infty}^{\infty} \frac{\sin x}{x(1+x^2)} \, dx \, .$$

Problem 14 Let f and g be positive continuous functions on \mathbb{R} , with $g \leq f$ everywhere. Assume the initial value problem

$$\frac{dx}{dt} = f(x), \quad x(0) = 0,$$

has a solution defined on all of \mathbb{R} . Prove that the initial value problem

$$\frac{dx}{dt} = g(x), \quad x(0) = 0,$$

also has a solution defined on all of \mathbb{R} .

Problem 15 Let G be the group of all real 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}$ with a > 0. Let N be the subgroup of those matrices in G having a = 1.

(a) Prove that N is a normal subgroup of G and that G/N is isomorphic to \mathbb{R} .

(b) Find a proper normal subgroup of G that contains N properly.

Problem 16 Let f be a C^1 function of \mathbb{R}^n into \mathbb{R}^n such that Df has rank n everywhere. Assume f is proper (which, by definition, means $f^{-1}(K)$ is compact whenever K is compact). Prove that $f(\mathbb{R}^n) = \mathbb{R}^n$.

Problem 17 Let s be a real number, and let the function u be defined in $\mathbb{C}\setminus(-\infty,0]$ by

$$u(re^{i\theta}) = r^s \cos s\theta$$
 $(r > 0, -\pi < \theta < \pi).$

Prove that u is a harmonic function.

Problem 18 Let k be a positive integer. Determine those real numbers c for which every sequence (x_n) of real numbers satisfying the recurrence relation

$$\frac{1}{2}(x_{n+1} + x_{n-1}) = cx_n$$

has period k (i.e., $x_{n+k} = x_n$ for all n).