Preliminary Exam - Fall 1993

Problem 1 Let X be a metric space and (x_n) a convergent sequence in X with limit x_0 . Prove that the set $C = \{x_0, x_1, x_2, ...\}$ is compact.

Problem 2 Let A be the additive group of rational numbers, and let M be the multiplicative group of positive rational numbers. Determine all homomorphisms of A into M.

Problem 3 Describe the region in the complex plane where the infinite series

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(\frac{nz}{z-2}\right)$$

converges. Draw a sketch of the region.

Problem 4 Let \mathbf{F} be a field. For m and n positive integers, let $M_{m \times n}$ be the vector space of $m \times n$ matrices over \mathbf{F} . Fix m and n, and fix matrices A and B in $M_{m \times n}$. Define the linear transformation T from $M_{n \times m}$ to $M_{m \times n}$ by

$$T(X) = AXB.$$

Prove that if $m \neq n$, then T is not invertible.

Problem 5 Let the function x(t) $(-\infty < t < \infty)$ be a solution of the differential equation

$$\frac{d^2x}{dt^2} - 2b\frac{dx}{dt} + cx = 0$$

such that x(0) = x(1) = 0. (Here, b and c are real constants.) Prove that x(n) = 0 for every integer n.

Problem 6 Let A, B, and C be finite abelian groups. Prove that if $A \times B$ is isomorphic to $A \times C$, then B is isomorphic to C.

Problem 7 Let $M_{n \times n}$ $(n \ge 2)$ be the space of real $n \times n$ matrices, identified in the usual way with the Euclidean space \mathbb{R}^{n^2} . Let F be the determinant map of $M_{n \times n}$ into \mathbb{R} : $F(X) = \det(X)$. Find all of the critical points of F; that is, all matrices X such that DF(X) = 0. **Problem 8** Prove that if A is an $n \times n$ matrix over \mathbb{C} , and if $A^k = I$ for some positive integer k, then A is diagonalizable.

Problem 9 Evaluate

$$\int_{-\infty}^{\infty} \frac{e^{-ix}}{x^2 - 2x + 4} \, dx$$

Problem 10 Let f be a continuous real valued function on $[0, \infty)$. Let A be the set of real numbers a that can be expressed as $a = \lim_{n\to\infty} f(x_n)$ for some sequence (x_n) in $[0,\infty)$ such that $\lim_{n\to\infty} x_n = \infty$. Prove that if A contains the two numbers a and b, then contains the entire interval with endpoints a and b.

Problem 11 Let R be a commutative ring with identity. Let G be a finite subgroup of R^* , the group of units of R. Prove that if R is an integral domain, then G is cyclic.

Problem 12 Evaluate the integral $\frac{1}{2\pi i} \int_{\gamma} f(z) dz$ for the function $f(z) = z^{-2}(1-z^2)^{-1}e^z$ and the curve γ depicted by

../Fig/Pr/Fa93-12.ps not found

Problem 13 Show that there are at least two nonisomorphic nonabelian groups of order 40.

Problem 14 Let n be an integer larger than 1. Is there a differentiable function on $[0, \infty)$ whose derivative equals its n^{th} power and whose value at the origin is positive?

Problem 15 Prove that the matrix

$$\left(\begin{array}{rrrrr} 0 & 5 & 1 & 0 \\ 5 & 0 & 5 & 1 \\ 1 & 5 & 0 & 5 \\ 0 & 1 & 5 & 0 \end{array}\right)$$

has two positive and two negative eigenvalues (taking into account multiplicities). **Problem 16** Let K be a continuous real valued function defined on $[0, 1] \times [0, 1]$. Let F be the family of functions f on [0, 1] of the form

$$f(x) = \int_0^1 g(y) K(x, y) \, dy$$

with g a real valued continuous function on [0,1] satisfying $|g| \leq 1$ everywhere. Prove that the family F is equicontinuous.

Problem 17 Let w be a positive continuous function on [0, 1], n a positive integer, and P_n the vector space of real polynomials whose degrees are at most n, equipped with the inner product

$$\langle p,q\rangle = \int_0^1 p(t)q(t)w(t) dt$$
.

- 1. Prove that P_n has an orthonormal basis p_0, p_1, \ldots, p_n (i.e., $\langle p_j, p_k \rangle = 1$ for j = k and 0 for $j \neq k$) such that deg $p_k = k$ for each k.
- 2. Prove that $\langle p_k, p'_k \rangle = 0$ for each k.

Problem 18 Let f be a continuous real valued function on [0, 1], and let the function h in the complex plane be defined by

$$h(z) = \int_0^1 f(t) \cos zt \, dt.$$

- 1. Prove that h is analytic in the entire plane.
- 2. Prove that h is the zero function only if f is the zero function.