Preliminary Exam - Fall 1995

Problem 1 Let G be a group generated by n elements. Find an upper bound N(n,k) for the number of subgroups H of G with the index [G:H] = k.

Problem 2 Let A be a finite subset of the unit disc in the plane, and let N(A,r) be the set of points at distance $\leq r$ from A, where 0 < r < 1. Show that the length of the boundary N(A,r) is, at most, C/r for some constant C independent of A.

Problem 3 Find the radius of convergence R of the Taylor series about z = 1 of the function $f(z) = 1/(1 + z^2 + z^4 + z^6 + z^8 + z^{10})$. Express the answer in terms of real numbers and square roots only.

Problem 4 Suppose A and B are real $n \times n$ matrices and C is a complex $n \times n$ matrix such that

 $CAC^{-1} = B$.

Find a real $n \times n$ matrix D such that $DAD^{-1} = B$.

Problem 5 Prove that $\mathbb{Q}[x, y]/\langle x^2 + y^2 - 1 \rangle$ is an integral domain and that its field of fractions is isomorphic to the field of rational functions $\mathbb{Q}(t)$.

Problem 6 Determine all real numbers L > 1 so that the boundary value problem

$$x^{2}y''(x) + y(x) = 0, \qquad 1 \le x \le L$$
$$y(1) = y(L) = 0$$

has a nonzero solution.

Problem 7 Let $g(z) = \sum_{n=0}^{\infty} g_n z^n$ and $h(z) = \sum_{n=0}^{\infty} h_n z^n$ be entire functions. Find a formula for the coefficients f_n in the Taylor expansion about z = 0 of

$$f(z) = \frac{1}{2\pi i} \int_{|w|=1} g(z/w)h(w) \frac{dw}{w}$$

Problem 8 Show that an $n \times n$ matrix of complex numbers A satisfying

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|$$

for $1 \leq i \leq n$ must be invertible.

Problem 9 Let x_1 be a real number, $0 < x_1 < 1$, and define a sequence by $x_{n+1} = x_n - x_n^{n+1}$. Show that $\liminf_{n \to \infty} x_n > 0$.

Problem 10 Let \mathbf{F} be a field and \mathbf{F}^* be the multiplicative group of nonzero elements. Let G be a subgroup of \mathbf{F}^* of finite order n. Show that G is cyclic.

Problem 11 Let f(z) = u(z) + iv(z) be holomorphic on |z| < 1, u and v real. Show that

$$\int_0^{2\pi} u(re^{i\theta})^2 d\theta = \int_0^{2\pi} v(re^{i\theta})^2 d\theta$$

for 0 < r < 1 if $u(0)^2 = v(0)^2$.

Problem 12 Let f and f' be continuous on $[0,\infty)$ and f(x) = 0 for $x \ge 10^{10}$. Show that

$$\int_0^\infty f(x)^2 dx \leqslant 2\sqrt{\int_0^\infty x^2 f(x)^2 dx} \sqrt{\int_0^\infty f'(x)^2 dx}$$

Problem 13 Show that

$$(1+z+z^{2}+\cdots+z^{9})(1+z^{10}+z^{20}+\cdots+z^{90})(1+z^{100}+z^{200}+\cdots+z^{900})\cdots=\frac{1}{1-z}$$

for |z| < 1.

Problem 14 Let $f(x) \in \mathbb{Q}[x]$ be a polynomial with rational coefficients. Show that there is a $g(x) \in \mathbb{Q}[x]$, $g \neq 0$, such that $f(x)g(x) = a_2x^2 + a_3x^3 + a_5x^5 + \cdots + a_px^p$ is a polynomial in which only prime exponents appear.

Problem 15 Let $f : \mathbb{R} \to \mathbb{R}$ be a C^{∞} function. Assume that f(x) has a local minimum at x = 0. Prove there is a disc centered on the y axis which lies above the graph of f and touches the graph at (0, f(0)).

Problem 16 Let A and B be nonsimilar $n \times n$ complex matrices with the same minimal and the same characteristic polynomial. Show that $n \ge 4$ and the minimal polynomial is not equal to the characteristic polynomial.

Problem 17 Let f_1, f_2, \ldots, f_n be continuous real valued functions on [a, b]. Show that the set $\{f_1, \ldots, f_n\}$ is linearly dependent on [a, b] if and only if

$$\det\left(\int_a^b f_i(x)f_j(x)dx\right) = 0 \; .$$

Problem 18 Let $f : \mathbb{R} \to \mathbb{R}$ be a nonzero C^{∞} function such that $f(x)f(y) = f\left(\sqrt{x^2 + y^2}\right)$ for all x and y and that $f(x) \to 0$ as $|x| \to \infty$.

- 1. Prove that f is an even function and that f(0) is 1.
- 2. Prove that f satisfies the differential equation f'(x) = f''(0)xf(x), and find the most general function satisfying the given conditions.