Preliminary Exam - Fall 1997

Problem 1 Define a sequence of real numbers (x_n) by

$$x_0 = 1,$$
 $x_{n+1} = \frac{1}{2 + x_n}$ for $n \ge 0.$

Show that (x_n) converges, and evaluate its limit.

Problem 2 Let f be a real valued function that is differentiable on an open interval containing [a, b]. Prove that if f'(a) < 0 and f'(b) > 0 then there is a point $c \in (a, b)$ such that f'(c) = 0.

Problem 3 Let f be an entire function such that, for all z, $|f(z)| = |\sin z|$. Prove that there is a constant C of modulus 1 such that $f(z) = C \sin z$.

Problem 4 Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^{2m}}$$

where n > 0 is an integer.

Problem 5 Let $\mathbb{D} = \{z \mid |z| < 1\}$, the open unit disc in the complex plane. Suppose that $f : \mathbb{D} \to \mathbb{D}$ is analytic, and that there exist two distinct points $a, b \in \mathbb{D}$ with f(a) = a, f(b) = b. Prove that f(z) = z for all $z \in \mathbb{D}$.

Problem 6 Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be distinct real numbers. Show that the *n* exponential functions $e^{\alpha_1 t}, e^{\alpha_2 t}, \ldots, e^{\alpha_n t}$ are linearly independent over the real numbers.

Problem 7 Define the index of a real symmetric matrix A to be the number of strictly positive eigenvalues of A minus the number of strictly negative eigenvalues. Suppose A, and B are real symmetric $n \times n$ matrices such that $x^tAx \leq x^tBx$ for all $n \times 1$ matrices x. Prove the index of A is less than or equal to the index of B. **Problem 8** Suppose H_i is a normal subgroup of a group G for $1 \le i \le k$, such that $H_i \cap H_j = \{1\}$ for $i \ne j$. Prove that G contains a subgroup isomorphic to $H_1 \times H_2 \times \cdots \times H_k$ if k = 2, but not necessarily if $k \ge 3$.

Problem 9 Prove that if p is prime then every group of order p^2 is abelian.

Problem 10 Prove that for all x > 0, $\sin x > x - \frac{x^3}{6}$.

Problem 11 Let $f : \mathbb{R} \to \mathbb{R}$ be twice differentiable, and suppose that for all $x \in \mathbb{R}$, $|f(x)| \leq 1$ and $|f''(x)| \leq 1$. Prove that $|f'(x)| \leq 2$ for all $x \in \mathbb{R}$.

Problem 12 A map $f : \mathbb{R}^m \to \mathbb{R}^n$ is proper if it is continuous and $f^{-1}(B)$ is compact for each compact subset B of \mathbb{R}^n ; f is closed if it is continuous and f(A) is closed for each closed subset A of \mathbb{R}^m .

- 1. Prove that every proper map $f : \mathbb{R}^m \to \mathbb{R}^n$ is closed.
- 2. Prove that every one-to-one closed map $f : \mathbb{R}^m \to \mathbb{R}^n$ is proper.

Problem 13 Conformally map the region inside the disc given by $\{z \in \mathbb{C} \mid |z-1| \leq 1\}$ and outside the disc $\{z \in \mathbb{C} \mid |z - \frac{1}{2}| \leq \frac{1}{2}\}$ onto the upper half-plane.

Problem 14 Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\cos kx}{1+x+x^2} \, dx$$

where $k \ge 0$.

Problem 15 Let $M_{n \times n}(\mathbf{K})$ be the vector space of $n \times n$ matrices over a field \mathbf{K} . Find the dimension of the subspace of $M_{n \times n}(\mathbf{K})$ spanned by $\{XY - YX \mid X, Y \in M_{n \times n}(\mathbf{K})\}$.

Problem 16 Prove that if A is a 2×2 matrix over the integers such that $A^n = I$ for some strictly positive integer n, then $A^{12} = I$.

Problem 17 A group G is generated by two elements a, b, each of order 2. Prove that G has a cyclic subgroup of index 2.

Problem 18 A finite abelian group G has the property that for each positive integer n the set $\{x \in G \mid x^n = 1\}$ has at most n elements. Prove that G is cyclic, and deduce that every finite field has cyclic multiplicative group.